PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2220.
Published online 2010 August 11. doi:  10.1107/S1600536810030461
PMCID: PMC3007845

N 2-(4-Chloro­benzyl­idene)-4-nitro­benzene-1,2-diamine

Abstract

In the title compound, C13H10ClN3O2, the dihedral angle between the two benzene rings is 3.61 (6)°. In the crystal structure, mol­ecules are linked by weak inter­molecular C—H(...)O hydrogen bonds, forming layers parallel to the bc plane. Short inter­molecular Cl(...)Cl contacts [3.491 (1) Å] are also observed.

Related literature

For the applications of Schiff base compounds see: Dao et al. (2000 [triangle]); Akbar Mobinikhaledi et al. (2009 [triangle]); So et al. (2007 [triangle]); Teoh et al. (1997 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2220-scheme1.jpg

Experimental

Crystal data

  • C13H10ClN3O2
  • M r = 275.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2220-efi1.jpg
  • a = 16.969 (2) Å
  • b = 3.7852 (5) Å
  • c = 19.986 (3) Å
  • β = 112.373 (3)°
  • V = 1187.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 100 K
  • 0.50 × 0.14 × 0.05 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.856, T max = 0.984
  • 16208 measured reflections
  • 4441 independent reflections
  • 3411 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.155
  • S = 1.07
  • 4441 reflections
  • 180 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030461/lh5102sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030461/lh5102Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (815002). AMF thanks the Libyan Government for providing a scholarship. FHK thanks Universiti Sains Malaysia for the Research University Golden Goose grant (No. 1001/PFIZIK/811012).

supplementary crystallographic information

Comment

Schiff base compounds have received much attention because of their potential applications. Some of these compounds exhibit various pharmacological activities including anticancer and antibacterial properties (Dao et al., 2000). Imine-type Schiff bases derived from aromatic amines and aromatic aldehydes are of growing interests because of their applications in many fields, including biological, inorganic, and analytical chemistry (Akbar Mobinikhaledi et al., 2009). In another application, So et al. (2007) synthesized and characterized a series of Schiff base derivatives, which exhibit liquid crystal properties. Some of these Schiff bases were found to form suitable inner coordination spheres bonding to tin atom with O and N atoms as quadridentate chelates (Teoh et al., 1997). Herein, we report the crystal structure of the title compound (I).

The geometrical paramters of (I), Fig.1, are within normal ranges. The dihedral angle between the two benzene rings (C1—C6) and (C8—C13) is 3.61 (6)°. The nitro group is almost co-planar with the attached C8—C13 benzene ring with dihedral angle of 3.4 (1)°.

In the crystal structure, (Fig. 2), the molecules are connected by intermolecular C7—H7A···O2i and C11—H11A···O1ii (see Table 1 for symmetry codes) hydrogen bonds forming layers parallel to bc plane. Short Cl1···Cl1 [3.491 (1)Å] contacts also observed in the crystal structure.

Experimental

The title compound was synthesized by adding 4-chlorobenzaldehyde (0.562 g, 4 mol) to the solution of 4-nitrobenzene-1,2-diamine (0.306 g, 2 mol) in methanol (30 ml). The mixture was refluxed for 3 h and left stirring overnight at room temperature. The resultant solid obtained was then filtered. Yellow needle-shaped single crystals suitable for X-ray structure determination were formed after slow evaporation of solvent at room temperature.

Refinement

The H atoms attached to N2 were located from a difference map and refined isotropically. The remaining H atoms were positioned geometrically and refined using a riding model [C–H = 0.93 Å , Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
The molecular structure, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
Fig. 2.
The crystal packing of (I) viewed down the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

Crystal data

C13H10ClN3O2F(000) = 568
Mr = 275.69Dx = 1.543 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3136 reflections
a = 16.969 (2) Åθ = 3.0–32.8°
b = 3.7852 (5) ŵ = 0.32 mm1
c = 19.986 (3) ÅT = 100 K
β = 112.373 (3)°Needle, yellow
V = 1187.1 (3) Å30.50 × 0.14 × 0.05 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer4441 independent reflections
Radiation source: fine-focus sealed tube3411 reflections with I > 2σ(I)
graphiteRint = 0.048
[var phi] and ω scansθmax = 33.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −25→25
Tmin = 0.856, Tmax = 0.984k = −5→5
16208 measured reflectionsl = −30→30

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0908P)2] where P = (Fo2 + 2Fc2)/3
4441 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.02638 (2)0.24212 (11)0.079898 (17)0.02738 (12)
O10.57994 (6)0.4164 (4)0.69359 (5)0.0316 (3)
O20.55664 (7)0.1900 (3)0.58829 (6)0.0266 (2)
N10.25047 (6)0.5157 (3)0.43505 (6)0.0179 (2)
N20.19596 (8)0.8229 (4)0.53077 (7)0.0238 (3)
N30.53280 (7)0.3567 (3)0.63014 (6)0.0202 (2)
C10.23385 (8)0.1616 (4)0.26105 (7)0.0183 (2)
H1A0.28870.07030.27500.022*
C20.17826 (8)0.1407 (4)0.18905 (7)0.0180 (2)
H2A0.19560.03780.15460.022*
C30.09674 (8)0.2754 (3)0.16947 (7)0.0173 (2)
C40.06938 (8)0.4328 (4)0.21968 (7)0.0181 (2)
H4A0.01440.52310.20550.022*
C50.12512 (8)0.4529 (4)0.29099 (7)0.0174 (2)
H5A0.10740.55680.32510.021*
C60.20807 (8)0.3188 (3)0.31270 (7)0.0153 (2)
C70.26832 (8)0.3427 (4)0.38775 (7)0.0177 (2)
H7A0.32080.22960.40140.021*
C80.30997 (7)0.5466 (3)0.50687 (6)0.0159 (2)
C90.27913 (8)0.7203 (3)0.55518 (7)0.0174 (2)
C100.33401 (9)0.7706 (4)0.62766 (7)0.0190 (3)
H10A0.31390.88350.65930.023*
C110.41718 (8)0.6551 (4)0.65241 (7)0.0191 (2)
H11A0.45340.68980.70040.023*
C120.44589 (7)0.4852 (3)0.60417 (6)0.0164 (2)
C130.39396 (7)0.4290 (3)0.53246 (6)0.0161 (2)
H13A0.41500.31370.50160.019*
H1N20.1659 (15)0.846 (7)0.4818 (13)0.049 (7)*
H2N20.1810 (14)0.980 (6)0.5534 (11)0.041 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.02798 (19)0.0325 (2)0.01613 (17)0.00207 (13)0.00220 (13)−0.00210 (12)
O10.0213 (5)0.0505 (7)0.0174 (5)0.0004 (5)0.0010 (4)0.0019 (5)
O20.0217 (5)0.0345 (6)0.0253 (5)0.0060 (4)0.0109 (4)0.0009 (4)
N10.0172 (4)0.0197 (5)0.0156 (5)−0.0002 (4)0.0048 (4)−0.0007 (4)
N20.0188 (5)0.0303 (7)0.0235 (6)0.0027 (5)0.0094 (4)−0.0043 (5)
N30.0168 (5)0.0256 (6)0.0175 (5)−0.0017 (4)0.0058 (4)0.0050 (4)
C10.0172 (5)0.0182 (6)0.0207 (6)0.0017 (4)0.0084 (4)−0.0001 (5)
C20.0198 (5)0.0182 (6)0.0177 (5)0.0005 (5)0.0089 (4)−0.0017 (5)
C30.0193 (5)0.0159 (6)0.0162 (5)−0.0017 (4)0.0062 (4)0.0008 (4)
C40.0156 (5)0.0186 (6)0.0192 (5)0.0013 (4)0.0057 (4)0.0000 (5)
C50.0170 (5)0.0181 (6)0.0184 (5)0.0003 (4)0.0080 (4)−0.0018 (5)
C60.0163 (5)0.0138 (5)0.0166 (5)−0.0013 (4)0.0071 (4)−0.0011 (4)
C70.0155 (5)0.0184 (6)0.0178 (5)0.0000 (4)0.0048 (4)0.0001 (5)
C80.0166 (5)0.0161 (5)0.0153 (5)−0.0014 (4)0.0065 (4)−0.0001 (4)
C90.0179 (5)0.0167 (6)0.0194 (6)−0.0019 (4)0.0092 (4)−0.0006 (4)
C100.0223 (6)0.0198 (6)0.0171 (5)−0.0029 (5)0.0100 (5)−0.0030 (5)
C110.0221 (6)0.0201 (6)0.0157 (5)−0.0046 (5)0.0080 (4)−0.0012 (5)
C120.0149 (5)0.0181 (6)0.0164 (5)−0.0021 (4)0.0060 (4)0.0024 (4)
C130.0175 (5)0.0168 (5)0.0147 (5)−0.0002 (4)0.0070 (4)0.0012 (4)

Geometric parameters (Å, °)

Cl1—C31.7375 (13)C4—C51.3805 (17)
O1—N31.2357 (15)C4—H4A0.9300
O2—N31.2325 (16)C5—C61.4009 (17)
N1—C71.2775 (17)C5—H5A0.9300
N1—C81.4107 (15)C6—C71.4615 (17)
N2—C91.3624 (18)C7—H7A0.9300
N2—H1N20.92 (2)C8—C131.3914 (17)
N2—H2N20.84 (2)C8—C91.4224 (18)
N3—C121.4486 (16)C9—C101.4054 (19)
C1—C21.3906 (18)C10—C111.3770 (19)
C1—C61.3980 (17)C10—H10A0.9300
C1—H1A0.9300C11—C121.3919 (18)
C2—C31.3837 (18)C11—H11A0.9300
C2—H2A0.9300C12—C131.3838 (17)
C3—C41.3900 (18)C13—H13A0.9300
C7—N1—C8121.07 (11)C1—C6—C7119.40 (11)
C9—N2—H1N2119.2 (14)C5—C6—C7121.55 (11)
C9—N2—H2N2119.4 (15)N1—C7—C6121.40 (11)
H1N2—N2—H2N2110 (2)N1—C7—H7A119.3
O2—N3—O1122.60 (12)C6—C7—H7A119.3
O2—N3—C12118.76 (11)C13—C8—N1125.71 (11)
O1—N3—C12118.63 (12)C13—C8—C9119.23 (11)
C2—C1—C6120.58 (11)N1—C8—C9115.05 (11)
C2—C1—H1A119.7N2—C9—C10121.35 (12)
C6—C1—H1A119.7N2—C9—C8119.16 (12)
C3—C2—C1118.88 (12)C10—C9—C8119.45 (11)
C3—C2—H2A120.6C11—C10—C9120.91 (12)
C1—C2—H2A120.6C11—C10—H10A119.5
C2—C3—C4121.77 (12)C9—C10—H10A119.5
C2—C3—Cl1119.05 (10)C10—C11—C12118.62 (12)
C4—C3—Cl1119.18 (10)C10—C11—H11A120.7
C5—C4—C3118.89 (11)C12—C11—H11A120.7
C5—C4—H4A120.6C13—C12—C11122.39 (11)
C3—C4—H4A120.6C13—C12—N3118.65 (11)
C4—C5—C6120.83 (11)C11—C12—N3118.95 (11)
C4—C5—H5A119.6C12—C13—C8119.40 (11)
C6—C5—H5A119.6C12—C13—H13A120.3
C1—C6—C5119.04 (11)C8—C13—H13A120.3
C6—C1—C2—C3−0.5 (2)N1—C8—C9—N23.61 (18)
C1—C2—C3—C40.5 (2)C13—C8—C9—C100.17 (19)
C1—C2—C3—Cl1−178.76 (10)N1—C8—C9—C10−178.77 (11)
C2—C3—C4—C5−0.4 (2)N2—C9—C10—C11177.75 (13)
Cl1—C3—C4—C5178.89 (10)C8—C9—C10—C110.2 (2)
C3—C4—C5—C60.3 (2)C9—C10—C11—C12−0.3 (2)
C2—C1—C6—C50.4 (2)C10—C11—C12—C130.1 (2)
C2—C1—C6—C7−178.94 (12)C10—C11—C12—N3−178.79 (12)
C4—C5—C6—C1−0.32 (19)O2—N3—C12—C13−2.73 (18)
C4—C5—C6—C7179.05 (12)O1—N3—C12—C13177.81 (12)
C8—N1—C7—C6−178.02 (11)O2—N3—C12—C11176.18 (13)
C1—C6—C7—N1172.72 (13)O1—N3—C12—C11−3.29 (19)
C5—C6—C7—N1−6.7 (2)C11—C12—C13—C80.3 (2)
C7—N1—C8—C136.3 (2)N3—C12—C13—C8179.15 (12)
C7—N1—C8—C9−174.84 (12)N1—C8—C13—C12178.42 (12)
C13—C8—C9—N2−177.44 (13)C9—C8—C13—C12−0.40 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.932.563.469 (2)165.
C11—H11A···O1ii0.932.543.2155 (17)130.

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5102).

References

  • Akbar Mobinikhaledi, Steel, P. J. & Polson, M. (2009). Synth. React. Inorg. Met.-Org. Nano-Met. Chem.39, 189–192.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Dao, V. T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem.35, 805–813. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • So, B. K., Kim, W. J., Lee, S. M., Jang, M. C., Song, H. H. & Park, J. H. (2007). Dyes Pigments, 73, 619–653
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Teoh, S. G., Yeap, G. Y., Loh, C. C., Foong, L. W., Teo, S. B. & Fun, H.-K. (1997). Polyhedron, 16, 2213–2221.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography