PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2405.
Published online 2010 August 28. doi:  10.1107/S1600536810033799
PMCID: PMC3007842

(E)-Methyl 3-(3,5-dibromo-2-hy­droxy­benzyl­idene)carbazate

Abstract

The title compound, C9H8Br2N2O3, crystallizes with two very similar independent mol­ecules in the asymmetric unit, each of which adopts a trans configuration with respect to the C=N bond. Intra­molecular O—H(...)N hydrogen bonds are observed in each independent mol­ecule. In the crystal structure, mol­ecules are linked into chains propagating along [010] by N—H(...)O and C—H(...)O hydrogen bonds. In addition, C—H(...)π inter­actions stabilize the structure.

Related literature

For general background to benzaldehyde­hydrazone derivatives, see: Parashar et al. (1988 [triangle]); Hadjoudis et al. (1987 [triangle]); Borg et al. (1999 [triangle]); Kahwa et al. (1986 [triangle]); Santos et al. (2001 [triangle]). For a related structure, see: Shang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2405-scheme1.jpg

Experimental

Crystal data

  • C9H8Br2N2O3
  • M r = 351.99
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2405-efi1.jpg
  • a = 7.6907 (11) Å
  • b = 9.9886 (14) Å
  • c = 15.503 (2) Å
  • α = 92.254 (6)°
  • β = 95.647 (6)°
  • γ = 91.394 (6)°
  • V = 1183.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.84 mm−1
  • T = 223 K
  • 0.22 × 0.21 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.977, T max = 0.989
  • 12305 measured reflections
  • 4109 independent reflections
  • 2425 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.175
  • S = 1.01
  • 4109 reflections
  • 289 parameters
  • H-atom parameters constrained
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.62 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810033799/ci5169sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033799/ci5169Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Hangzhou Vocational and Technical College for financial support.

supplementary crystallographic information

Comment

Benzaldehydehydrazone derivatives have attracted much attention due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermediates of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many interesting properties (Borg et al., 1999). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). We report here the crystal structure of the title compound (Fig. 1).

The title compound contains two independent, but almost identical molecules in the asymmetric unit. Each independent molecule adopts a trans configuration with respect to the C═N bond. The N1/N2/O2/O3/C7-C9 and N3/N4/O5/O6/C16-C18 planes form dihedral angles of 8.18 (6)° and 7.28 (7)°, respectively, with the C1—C6 and C10—C15 planes. The bond lengths and angles are comparable to those observed for methylN'-[(E)-4-methoxybenzylidene]hydrazinecarboxylate (Shang et al., 2007). Intramolecular O—H···N hydrogen bonds are observed in each independent molecule.

In the crystal structure, the molecules are linked into chains running along the [010] by N—H···O and C—H···O hydrogen bonds. In addition, intermolecular C—H···π interactions are observed, which further stabilize the structure (Table 1).

Experimental

3,5-Dibromo-2-hydroxybenzaldehyde (2.79 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90 g, 0.01 mol) were dissolved in stirred methanol (15 ml) and left for 5.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 96% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ispropanol solution at room temperature (m.p. 415–417 K).

Refinement

H atoms were positioned geometrically (O–H = 0.83 Å, N-H = 0.87 Å and C–H = 0.94 or 0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
Fig. 2.
Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C9H8Br2N2O3Z = 4
Mr = 351.99F(000) = 680
Triclinic, P1Dx = 1.975 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6907 (11) ÅCell parameters from 4109 reflections
b = 9.9886 (14) Åθ = 1.3–25.0°
c = 15.503 (2) ŵ = 6.84 mm1
α = 92.254 (6)°T = 223 K
β = 95.647 (6)°Block, colourless
γ = 91.394 (6)°0.22 × 0.21 × 0.18 mm
V = 1183.8 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer4109 independent reflections
Radiation source: fine-focus sealed tube2425 reflections with I > 2σ(I)
graphiteRint = 0.059
[var phi] and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −9→8
Tmin = 0.977, Tmax = 0.989k = −11→11
12305 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0947P)2] where P = (Fo2 + 2Fc2)/3
4109 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = −0.62 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0209 (8)0.9946 (6)0.2567 (4)0.0463 (16)
C2−0.0373 (9)1.0058 (7)0.1701 (5)0.0551 (18)
C3−0.0724 (9)0.8941 (7)0.1156 (5)0.0578 (19)
H3−0.11080.90370.05680.069*
C4−0.0513 (9)0.7688 (7)0.1474 (5)0.0568 (19)
C50.0050 (8)0.7525 (7)0.2340 (5)0.0529 (18)
H50.01670.66610.25540.063*
C60.0441 (8)0.8656 (6)0.2893 (4)0.0428 (15)
C70.1087 (8)0.8455 (6)0.3787 (4)0.0485 (16)
H70.11290.75860.39990.058*
C80.2901 (8)1.0311 (6)0.5634 (4)0.0454 (16)
C90.4215 (10)1.0965 (7)0.7025 (5)0.064 (2)
H9A0.46481.05660.75620.096*
H9B0.32951.15780.71350.096*
H9C0.51621.14510.67950.096*
C100.3833 (8)0.4911 (6)0.2572 (4)0.0436 (15)
C110.4111 (8)0.4998 (7)0.1704 (5)0.0522 (17)
C120.4301 (8)0.3882 (7)0.1186 (5)0.0582 (19)
H120.44820.39550.05990.070*
C130.4218 (9)0.2622 (7)0.1556 (5)0.0528 (18)
C140.3968 (8)0.2485 (6)0.2395 (4)0.0495 (17)
H140.39280.16270.26230.059*
C150.3769 (8)0.3617 (6)0.2927 (4)0.0436 (15)
C160.3449 (8)0.3454 (6)0.3820 (4)0.0465 (16)
H160.34940.25960.40480.056*
C170.2301 (8)0.5304 (6)0.5620 (4)0.0427 (15)
C180.1545 (10)0.5951 (7)0.7015 (5)0.063 (2)
H18A0.13560.55520.75590.094*
H18B0.04920.63880.67900.094*
H18C0.25030.66070.71100.094*
N10.1604 (7)0.9473 (5)0.4288 (4)0.0483 (14)
N20.2264 (7)0.9247 (5)0.5120 (4)0.0542 (15)
H20.22740.84420.53130.065*
N30.3108 (7)0.4455 (5)0.4302 (3)0.0452 (13)
N40.2761 (7)0.4238 (5)0.5131 (4)0.0508 (14)
H40.28320.34430.53400.061*
O10.0559 (6)1.1076 (4)0.3070 (3)0.0547 (12)
H10.09341.08750.35670.082*
O20.2888 (7)1.1459 (4)0.5407 (3)0.0688 (15)
O30.3523 (6)0.9915 (4)0.6398 (3)0.0557 (12)
O40.3642 (6)0.6050 (4)0.3056 (3)0.0547 (12)
H4A0.34910.58570.35590.082*
O50.1974 (6)0.4908 (4)0.6391 (3)0.0569 (12)
O60.2219 (7)0.6444 (4)0.5383 (3)0.0630 (14)
Br1−0.06212 (11)1.17836 (8)0.12394 (5)0.0693 (3)
Br2−0.09610 (12)0.61188 (8)0.07391 (6)0.0806 (3)
Br30.41876 (12)0.67238 (8)0.12264 (6)0.0735 (3)
Br40.43692 (12)0.10563 (8)0.08150 (6)0.0764 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.043 (4)0.051 (4)0.046 (5)−0.004 (3)0.010 (3)−0.005 (3)
C20.053 (4)0.060 (4)0.054 (5)0.003 (3)0.009 (4)0.007 (4)
C30.062 (4)0.076 (5)0.035 (4)0.004 (4)0.010 (3)−0.001 (4)
C40.063 (4)0.057 (4)0.047 (5)−0.007 (3)0.000 (4)−0.014 (4)
C50.053 (4)0.053 (4)0.052 (5)0.007 (3)0.009 (3)−0.009 (3)
C60.052 (4)0.042 (4)0.035 (4)0.000 (3)0.013 (3)−0.003 (3)
C70.061 (4)0.039 (3)0.047 (5)0.004 (3)0.011 (3)−0.002 (3)
C80.061 (4)0.042 (4)0.034 (4)0.003 (3)0.012 (3)0.000 (3)
C90.076 (5)0.076 (5)0.038 (5)0.003 (4)0.000 (4)−0.008 (4)
C100.040 (3)0.051 (4)0.040 (4)0.005 (3)0.007 (3)−0.002 (3)
C110.050 (4)0.061 (4)0.049 (5)0.003 (3)0.013 (3)0.011 (4)
C120.053 (4)0.078 (5)0.043 (5)0.001 (4)0.006 (3)−0.002 (4)
C130.054 (4)0.063 (5)0.040 (5)0.004 (3)0.008 (3)−0.018 (3)
C140.061 (4)0.049 (4)0.039 (4)−0.001 (3)0.010 (3)−0.008 (3)
C150.046 (4)0.047 (4)0.038 (4)0.003 (3)0.005 (3)0.002 (3)
C160.053 (4)0.039 (3)0.048 (5)0.001 (3)0.008 (3)0.003 (3)
C170.058 (4)0.036 (4)0.034 (4)0.000 (3)0.004 (3)0.002 (3)
C180.079 (5)0.070 (5)0.040 (5)0.000 (4)0.015 (4)−0.009 (4)
N10.067 (4)0.042 (3)0.036 (4)0.002 (3)0.002 (3)0.003 (3)
N20.083 (4)0.028 (3)0.050 (4)0.002 (3)0.001 (3)0.006 (3)
N30.066 (4)0.037 (3)0.034 (3)0.003 (2)0.013 (3)0.001 (2)
N40.083 (4)0.029 (3)0.041 (4)0.003 (3)0.010 (3)0.003 (3)
O10.079 (3)0.048 (3)0.037 (3)−0.005 (2)0.004 (2)0.004 (2)
O20.114 (4)0.025 (2)0.067 (4)−0.003 (2)0.004 (3)0.013 (2)
O30.091 (3)0.041 (2)0.032 (3)−0.003 (2)−0.005 (2)0.005 (2)
O40.078 (3)0.047 (3)0.041 (3)0.008 (2)0.014 (2)0.004 (2)
O50.087 (3)0.049 (3)0.037 (3)0.008 (2)0.016 (2)0.002 (2)
O60.110 (4)0.030 (2)0.053 (3)0.010 (2)0.021 (3)0.011 (2)
Br10.0837 (6)0.0719 (5)0.0532 (6)0.0081 (4)0.0047 (4)0.0159 (4)
Br20.0933 (7)0.0793 (6)0.0647 (6)0.0018 (5)−0.0013 (5)−0.0291 (5)
Br30.0975 (7)0.0730 (6)0.0543 (6)0.0022 (4)0.0234 (5)0.0158 (4)
Br40.0873 (6)0.0814 (6)0.0595 (6)0.0082 (4)0.0131 (4)−0.0301 (4)

Geometric parameters (Å, °)

C1—O11.353 (7)C11—C121.367 (9)
C1—C21.383 (9)C11—Br31.905 (7)
C1—C61.412 (8)C12—C131.406 (10)
C2—C31.378 (9)C12—H120.94
C2—Br11.899 (7)C13—C141.346 (9)
C3—C41.370 (9)C13—Br41.917 (6)
C3—H30.94C14—C151.393 (8)
C4—C51.387 (10)C14—H140.94
C4—Br21.906 (7)C15—C161.445 (9)
C5—C61.400 (8)C16—N31.272 (7)
C5—H50.94C16—H160.94
C6—C71.448 (9)C17—O61.211 (7)
C7—N11.286 (7)C17—O51.319 (7)
C7—H70.94C17—N41.357 (7)
C8—O21.212 (7)C18—O51.460 (7)
C8—O31.312 (8)C18—H18A0.97
C8—N21.355 (8)C18—H18B0.97
C9—O31.456 (7)C18—H18C0.97
C9—H9A0.97N1—N21.368 (7)
C9—H9B0.97N2—H20.87
C9—H9C0.97N3—N41.364 (7)
C10—O41.357 (7)N4—H40.87
C10—C111.388 (9)O1—H10.83
C10—C151.426 (8)O4—H4A0.83
O1—C1—C2118.9 (6)C11—C12—C13118.1 (7)
O1—C1—C6122.2 (6)C11—C12—H12120.9
C2—C1—C6118.9 (6)C13—C12—H12120.9
C3—C2—C1121.3 (7)C14—C13—C12122.3 (6)
C3—C2—Br1119.1 (6)C14—C13—Br4119.6 (6)
C1—C2—Br1119.6 (5)C12—C13—Br4118.0 (5)
C4—C3—C2119.8 (7)C13—C14—C15119.8 (6)
C4—C3—H3120.1C13—C14—H14120.1
C2—C3—H3120.1C15—C14—H14120.1
C3—C4—C5121.0 (6)C14—C15—C10119.4 (6)
C3—C4—Br2121.1 (6)C14—C15—C16119.3 (6)
C5—C4—Br2117.9 (5)C10—C15—C16121.3 (6)
C4—C5—C6119.5 (6)N3—C16—C15120.9 (6)
C4—C5—H5120.3N3—C16—H16119.5
C6—C5—H5120.3C15—C16—H16119.5
C5—C6—C1119.5 (6)O6—C17—O5125.5 (6)
C5—C6—C7118.3 (6)O6—C17—N4125.0 (6)
C1—C6—C7122.2 (6)O5—C17—N4109.5 (5)
N1—C7—C6119.5 (6)O5—C18—H18A109.5
N1—C7—H7120.2O5—C18—H18B109.5
C6—C7—H7120.2H18A—C18—H18B109.5
O2—C8—O3125.8 (6)O5—C18—H18C109.5
O2—C8—N2123.9 (6)H18A—C18—H18C109.5
O3—C8—N2110.4 (5)H18B—C18—H18C109.5
O3—C9—H9A109.5C7—N1—N2118.2 (5)
O3—C9—H9B109.5C8—N2—N1118.3 (5)
H9A—C9—H9B109.5C8—N2—H2120.9
O3—C9—H9C109.5N1—N2—H2120.9
H9A—C9—H9C109.5C16—N3—N4118.5 (5)
H9B—C9—H9C109.5C17—N4—N3117.7 (5)
O4—C10—C11119.4 (6)C17—N4—H4121.2
O4—C10—C15122.1 (6)N3—N4—H4121.2
C11—C10—C15118.5 (6)C1—O1—H1109.5
C12—C11—C10121.8 (6)C8—O3—C9116.1 (5)
C12—C11—Br3119.5 (6)C10—O4—H4A109.5
C10—C11—Br3118.6 (5)C17—O5—C18116.5 (5)
O1—C1—C2—C3179.0 (6)C11—C12—C13—C14−0.3 (11)
C6—C1—C2—C3−0.1 (10)C11—C12—C13—Br4177.0 (5)
O1—C1—C2—Br11.2 (8)C12—C13—C14—C150.5 (10)
C6—C1—C2—Br1−177.9 (4)Br4—C13—C14—C15−176.8 (5)
C1—C2—C3—C40.6 (11)C13—C14—C15—C100.0 (10)
Br1—C2—C3—C4178.5 (5)C13—C14—C15—C16178.2 (6)
C2—C3—C4—C50.1 (11)O4—C10—C15—C14179.8 (5)
C2—C3—C4—Br2−179.3 (5)C11—C10—C15—C14−0.6 (9)
C3—C4—C5—C6−1.3 (10)O4—C10—C15—C161.7 (9)
Br2—C4—C5—C6178.1 (5)C11—C10—C15—C16−178.7 (6)
C4—C5—C6—C11.8 (9)C14—C15—C16—N3−173.7 (6)
C4—C5—C6—C7−177.7 (6)C10—C15—C16—N34.4 (9)
O1—C1—C6—C5179.8 (6)C6—C7—N1—N2−177.8 (5)
C2—C1—C6—C5−1.1 (9)O2—C8—N2—N11.6 (10)
O1—C1—C6—C7−0.7 (9)O3—C8—N2—N1−178.3 (5)
C2—C1—C6—C7178.4 (6)C7—N1—N2—C8176.3 (6)
C5—C6—C7—N1173.9 (6)C15—C16—N3—N4177.9 (5)
C1—C6—C7—N1−5.7 (9)O6—C17—N4—N3−2.1 (10)
O4—C10—C11—C12−179.6 (6)O5—C17—N4—N3178.5 (5)
C15—C10—C11—C120.8 (10)C16—N3—N4—C17−176.3 (6)
O4—C10—C11—Br3−0.7 (8)O2—C8—O3—C91.5 (10)
C15—C10—C11—Br3179.7 (4)N2—C8—O3—C9−178.6 (6)
C10—C11—C12—C13−0.4 (10)O6—C17—O5—C18−2.5 (10)
Br3—C11—C12—C13−179.3 (5)N4—C17—O5—C18176.9 (5)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.604 (7)146
N2—H2···O60.862.012.845 (6)163
N4—H4···O2i0.862.002.828 (6)161
O4—H4A···N30.821.892.609 (7)145
C7—H7···O60.932.563.312 (8)139
C16—H16···O2i0.932.523.282 (8)139
C9—H9B···Cg1ii0.972.893.594 (8)131
C18—H18C···Cg2iii0.972.893.561 (8)128

Symmetry codes: (i) x, y−1, z; (ii) −x, −y+2, −z+1; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5169).

References

  • Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem.42, 4331–4342. [PubMed]
  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.
  • Kahwa, I. A., Selbin, J., Hsieh, T. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201–208.
  • Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.
  • Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
  • Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography