PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2408–o2409.
Published online 2010 August 28. doi:  10.1107/S1600536810033908
PMCID: PMC3007841

2-Amino-5-bromo­pyridinium 3-carb­oxy-4-hy­droxy­benzene­sulfonate

Abstract

The asymmetric unit of the title salt, C5H6BrN2 +·C7H5O6S, contains two independent 2-amino-5-bromo­pyridinium cations and two independent 3-carb­oxy-4-hy­droxy­benzene­sulfonate anions. The hy­droxy and carboxyl groups of the anions are involved in intra­molecular O—H(...)O hydrogen bonds, which generate S(6) ring motifs. In the crystal structure, the ions are linked by N—H(...)O and O—H(...)O hydrogen bonds into a two-dimensional network parallel to (110). Adjacent networks are linked via C—H(...)O hydrogen bonds.

Related literature

For applications of pyridinium compounds, see: Akkurt et al. (2005 [triangle]); Navarro Ranninger et al. (1985 [triangle]); Krizanovic et al. (1993 [triangle]); Luque et al. (1997 [triangle]); Qin et al. (1999 [triangle]); Yip et al. (1999 [triangle]); Lah et al. (2002 [triangle]); Ren et al. (2002 [triangle]); Rivas et al. (2003 [triangle]); Luque et al. (1997 [triangle]); Jin et al. (2000 [triangle]); Albrecht et al. (2003 [triangle]). For related structures, see: Hemamalini & Fun (2010 [triangle]); Quah et al. (2010 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2408-scheme1.jpg

Experimental

Crystal data

  • C5H6BrN2 +·C7H5O6S
  • M r = 391.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2408-efi1.jpg
  • a = 7.8425 (2) Å
  • b = 10.8682 (3) Å
  • c = 16.5457 (5) Å
  • α = 85.207 (2)°
  • β = 83.290 (2)°
  • γ = 86.537 (2)°
  • V = 1393.87 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.13 mm−1
  • T = 100 K
  • 0.26 × 0.14 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.498, T max = 0.772
  • 34040 measured reflections
  • 9322 independent reflections
  • 7366 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.181
  • S = 1.11
  • 9322 reflections
  • 397 parameters
  • H-atom parameters constrained
  • Δρmax = 1.65 e Å−3
  • Δρmin = −0.83 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033908/ci5165sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033908/ci5165Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridinium derivatives often exhibit antibacterial and antifungal activities (Akkurt et al., 2005). There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Krizanovic et al., 1993; Luque et al., 1997; Qin et al., 1999; Yip et al., 1999; Lah et al., 2002; Ren et al., 2002; Rivas et al., 2003) or as protonated cations (Luque et al., 1997; Jin et al., 2000; Albrecht et al., 2003). We have been interested in hydrogen-bonded systems formed by 2-aminopyridines and carboxylic acids that generate molecular assemblies (Hemamalini & Fun, 2010; Quah et al., 2010). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-bromopyridinium cations (A and B) and two 3-carboxy-4-hydroxybenzenesulfonate anions (A and B) (Fig. 1). Each 2-amino-5-bromopyridinium cation is planar, with a maximum deviation of 0.015 (1) Å for atom Br1A in cation A and 0.031 (1) Å for Br1B atom in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C1A—N1A—C5A [123.9 (4)°] and C1B—N1B—C5B [123.8 (4)°] angles.

In the crystal structure (Fig. 2), the sulfonate group of each 3-carboxy-4-hydroxybenzenesulfonate anion interacts with the corresponding 2-amino-5-bromopyridinium cations via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). Here, sulfonate groups mimic the role of the carboxylate groups. Furthermore, the ionic units are linked by N—H···O, O—H···O and C—H···O (Table 1) hydrogen bonds generating a three-dimensional network. The 3-carboxy-4-hydroxybenzenesulfonate anions self-assemble via O—H···O and C—H···O interactions, leading to the formation of a sheet-like structure, as shown in Fig. 3. There are intramolecular hydrogen bonds between the -OH and -COOH groups in sulfosalicylate anions, which generate S(6) ring motifs.

Experimental

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (46 mg, Aldrich) and sulfosalicylic acid (54 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and yellow coloured crystals of the title compound appeared after a few days.

Refinement

The N- and O-bound H atoms were initially located in a difference map and later allowed to ride on the parent atoms [N–H = 0.76–0.98 Å and O–H = 0.82–0.90 Å], with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O). C-bound H atoms were positioned geometrically [C–H = 0.93 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C). In the final difference Fourier map the highest peak is 0.88 Å from atom Br1A and the deepest hole is 1.55 Å from atom C6A.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Hydrogen bonding patterns in compound (I).
Fig. 3.
A view of hydrogen-bonded sheet made up of 3-carboxy-4-hydroxy benzenesulfonate anions.

Crystal data

C5H6BrN2+·C7H5O6SZ = 4
Mr = 391.20F(000) = 784
Triclinic, P1Dx = 1.864 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8425 (2) ÅCell parameters from 9916 reflections
b = 10.8682 (3) Åθ = 3.0–31.4°
c = 16.5457 (5) ŵ = 3.13 mm1
α = 85.207 (2)°T = 100 K
β = 83.290 (2)°Plate, yellow
γ = 86.537 (2)°0.26 × 0.14 × 0.09 mm
V = 1393.87 (7) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer9322 independent reflections
Radiation source: fine-focus sealed tube7366 reflections with I > 2σ(I)
graphiteRint = 0.040
[var phi] and ω scansθmax = 31.7°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −11→11
Tmin = 0.498, Tmax = 0.772k = −15→16
34040 measured reflectionsl = −24→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.0451P)2 + 14.502P] where P = (Fo2 + 2Fc2)/3
9322 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 1.65 e Å3
0 restraintsΔρmin = −0.83 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1A0.34842 (7)1.03576 (5)0.09171 (3)0.02290 (13)
N1A0.3053 (5)1.0274 (4)0.3409 (2)0.0164 (7)
H1NA0.37750.97560.37670.020*
N2A0.1288 (6)1.1186 (4)0.4427 (3)0.0220 (9)
H2AB0.03691.17140.45140.026*
H2NA0.16501.09100.48430.026*
C1A0.1717 (6)1.1047 (5)0.3644 (3)0.0179 (9)
C2A0.0822 (6)1.1683 (5)0.3013 (3)0.0181 (9)
H2AA−0.01071.22290.31490.022*
C3A0.1326 (6)1.1490 (5)0.2214 (3)0.0180 (9)
H3AA0.07321.18950.18060.022*
C4A0.2754 (6)1.0674 (5)0.2008 (3)0.0161 (8)
C5A0.3601 (6)1.0076 (5)0.2613 (3)0.0163 (8)
H5AA0.45440.95380.24850.020*
S1A0.15205 (14)0.68598 (11)0.03315 (6)0.0126 (2)
O1A−0.2400 (5)0.9811 (3)0.2821 (2)0.0180 (7)
H1OA−0.20780.94240.32290.027*
O2A−0.0584 (5)0.8634 (4)0.3883 (2)0.0227 (8)
O3A0.1606 (5)0.7338 (3)0.3455 (2)0.0178 (7)
H2OA0.19210.74180.39520.027*
O4A0.2922 (4)0.7619 (3)−0.0065 (2)0.0169 (7)
O5A0.2150 (5)0.5735 (3)0.0766 (2)0.0196 (7)
O6A0.0315 (5)0.6618 (4)−0.0241 (2)0.0194 (7)
C6A−0.1432 (6)0.9151 (4)0.2271 (3)0.0134 (8)
C7A−0.1724 (6)0.9374 (4)0.1452 (3)0.0162 (8)
H7AA−0.25280.99920.13040.019*
C8A−0.0827 (6)0.8683 (4)0.0861 (3)0.0150 (8)
H8AA−0.10280.88380.03180.018*
C9A0.0377 (6)0.7754 (4)0.1079 (3)0.0134 (8)
C10A0.0740 (6)0.7554 (4)0.1881 (3)0.0130 (8)
H10A0.15760.69540.20180.016*
C11A−0.0146 (6)0.8250 (4)0.2484 (3)0.0129 (8)
C12A0.0249 (6)0.8082 (4)0.3339 (3)0.0154 (8)
Br1B0.82103 (7)0.51159 (5)0.36511 (3)0.02183 (12)
N1B0.7997 (5)0.5274 (4)0.1191 (2)0.0151 (7)
H1NB0.85540.50000.07720.018*
N2B0.6286 (6)0.6276 (4)0.0271 (2)0.0185 (8)
H2NB0.69420.6071−0.01340.022*
H3NB0.54780.66410.01670.022*
C1B0.6675 (6)0.6070 (4)0.1026 (3)0.0148 (8)
C2B0.5735 (6)0.6639 (5)0.1700 (3)0.0181 (9)
H2BA0.48060.71870.16120.022*
C3B0.6179 (7)0.6392 (5)0.2468 (3)0.0190 (9)
H3BA0.55690.67750.29030.023*
C4B0.7588 (6)0.5541 (5)0.2600 (3)0.0157 (8)
C5B0.8482 (6)0.5005 (4)0.1952 (3)0.0151 (8)
H5BA0.94180.44590.20300.018*
S1B0.34815 (15)0.81374 (11)0.51288 (7)0.0149 (2)
O1B0.7530 (5)0.5267 (3)0.7495 (2)0.0182 (7)
H1OB0.71440.53490.79670.027*
O2B0.5619 (5)0.6350 (4)0.8632 (2)0.0196 (7)
O3B0.3442 (5)0.7652 (3)0.8315 (2)0.0176 (7)
H2OB0.32800.77780.88440.026*
O4B0.4611 (5)0.8372 (4)0.4372 (2)0.0239 (8)
O5B0.2794 (6)0.9255 (4)0.5500 (2)0.0269 (9)
O6B0.2102 (5)0.7328 (4)0.5012 (2)0.0201 (7)
C6B0.6577 (6)0.5938 (4)0.6973 (3)0.0133 (8)
C7B0.6953 (7)0.5781 (5)0.6139 (3)0.0183 (9)
H7BA0.78260.52150.59630.022*
C8B0.6037 (6)0.6462 (5)0.5575 (3)0.0186 (9)
H8BA0.62930.63530.50210.022*
C9B0.4723 (6)0.7315 (4)0.5838 (3)0.0144 (8)
C10B0.4318 (6)0.7471 (4)0.6658 (3)0.0131 (8)
H10B0.34300.80310.68280.016*
C11B0.5235 (6)0.6792 (4)0.7235 (3)0.0121 (7)
C12B0.4794 (6)0.6907 (4)0.8116 (3)0.0140 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br1A0.0219 (2)0.0316 (3)0.0159 (2)−0.0003 (2)−0.00412 (17)−0.00410 (18)
N1A0.0165 (18)0.0151 (19)0.0166 (17)0.0003 (15)−0.0026 (14)0.0048 (14)
N2A0.023 (2)0.025 (2)0.0170 (19)0.0012 (17)0.0003 (16)0.0000 (16)
C1A0.018 (2)0.018 (2)0.017 (2)−0.0045 (17)0.0005 (16)0.0005 (17)
C2A0.014 (2)0.019 (2)0.021 (2)0.0019 (17)−0.0016 (16)0.0014 (17)
C3A0.016 (2)0.018 (2)0.020 (2)0.0010 (17)−0.0052 (17)0.0013 (17)
C4A0.015 (2)0.018 (2)0.0162 (19)−0.0050 (17)−0.0020 (15)0.0011 (16)
C5A0.0122 (19)0.017 (2)0.019 (2)0.0010 (16)−0.0019 (16)0.0007 (16)
S1A0.0121 (5)0.0141 (5)0.0114 (4)0.0016 (4)−0.0007 (3)−0.0027 (4)
O1A0.0182 (16)0.0205 (18)0.0152 (15)0.0078 (13)−0.0030 (12)−0.0050 (13)
O2A0.0253 (19)0.028 (2)0.0148 (15)0.0126 (15)−0.0066 (13)−0.0063 (14)
O3A0.0188 (17)0.0184 (17)0.0166 (15)0.0095 (13)−0.0067 (12)−0.0042 (12)
O4A0.0147 (15)0.0189 (17)0.0164 (15)−0.0015 (13)0.0017 (12)−0.0024 (12)
O5A0.0242 (18)0.0155 (17)0.0181 (16)0.0067 (14)−0.0017 (13)−0.0009 (12)
O6A0.0183 (17)0.0240 (19)0.0175 (15)−0.0015 (14)−0.0032 (13)−0.0093 (13)
C6A0.0134 (19)0.013 (2)0.0137 (18)0.0030 (15)−0.0025 (15)−0.0029 (15)
C7A0.019 (2)0.013 (2)0.0166 (19)0.0025 (17)−0.0040 (16)−0.0015 (15)
C8A0.016 (2)0.016 (2)0.0127 (18)0.0030 (16)−0.0035 (15)−0.0017 (15)
C9A0.016 (2)0.0117 (19)0.0124 (18)−0.0016 (15)0.0025 (15)−0.0038 (14)
C10A0.0132 (19)0.012 (2)0.0141 (18)−0.0020 (15)−0.0015 (15)−0.0038 (15)
C11A0.0135 (19)0.014 (2)0.0121 (17)0.0013 (15)−0.0034 (14)−0.0021 (14)
C12A0.018 (2)0.014 (2)0.0157 (19)0.0013 (16)−0.0043 (16)−0.0027 (15)
Br1B0.0238 (3)0.0286 (3)0.0131 (2)−0.0010 (2)−0.00254 (17)−0.00132 (17)
N1B0.0132 (17)0.019 (2)0.0130 (16)−0.0017 (14)0.0005 (13)−0.0033 (14)
N2B0.0172 (19)0.023 (2)0.0154 (17)0.0027 (16)−0.0034 (14)−0.0017 (15)
C1B0.014 (2)0.015 (2)0.0155 (19)−0.0031 (16)0.0002 (15)−0.0008 (15)
C2B0.017 (2)0.016 (2)0.022 (2)0.0019 (17)−0.0020 (17)−0.0046 (17)
C3B0.022 (2)0.017 (2)0.017 (2)−0.0029 (18)0.0031 (17)−0.0045 (17)
C4B0.016 (2)0.019 (2)0.0124 (18)−0.0048 (17)−0.0014 (15)−0.0009 (15)
C5B0.016 (2)0.012 (2)0.017 (2)−0.0002 (16)−0.0024 (16)−0.0018 (15)
S1B0.0165 (5)0.0162 (5)0.0123 (4)0.0028 (4)−0.0046 (4)−0.0005 (4)
O1B0.0190 (17)0.0208 (18)0.0139 (14)0.0071 (13)−0.0032 (12)−0.0002 (12)
O2B0.0237 (18)0.0205 (18)0.0136 (15)0.0073 (14)−0.0040 (13)0.0006 (12)
O3B0.0207 (17)0.0184 (17)0.0126 (14)0.0039 (13)−0.0008 (12)0.0001 (12)
O4B0.0250 (19)0.029 (2)0.0166 (16)0.0023 (16)−0.0023 (14)0.0037 (14)
O5B0.038 (2)0.0215 (19)0.0210 (17)0.0152 (17)−0.0109 (16)−0.0052 (14)
O6B0.0193 (17)0.0232 (19)0.0186 (16)−0.0028 (14)−0.0076 (13)0.0011 (13)
C6B0.0105 (18)0.015 (2)0.0144 (18)0.0015 (15)−0.0022 (14)−0.0006 (15)
C7B0.018 (2)0.020 (2)0.016 (2)0.0066 (18)−0.0025 (16)−0.0034 (17)
C8B0.018 (2)0.022 (2)0.015 (2)0.0070 (18)−0.0050 (16)−0.0044 (17)
C9B0.015 (2)0.016 (2)0.0130 (18)0.0021 (16)−0.0048 (15)−0.0020 (15)
C10B0.0128 (19)0.013 (2)0.0142 (18)0.0003 (15)−0.0031 (14)−0.0014 (15)
C11B0.0129 (19)0.0116 (19)0.0121 (17)0.0011 (15)−0.0030 (14)−0.0021 (14)
C12B0.017 (2)0.013 (2)0.0124 (18)−0.0014 (16)−0.0020 (15)0.0005 (14)

Geometric parameters (Å, °)

Br1A—C4A1.883 (5)Br1B—C4B1.874 (5)
N1A—C1A1.344 (7)N1B—C1B1.348 (6)
N1A—C5A1.367 (6)N1B—C5B1.361 (6)
N1A—H1NA0.98N1B—H1NB0.84
N2A—C1A1.320 (6)N2B—C1B1.318 (6)
N2A—H2AB0.90N2B—H2NB0.83
N2A—H2NA0.80N2B—H3NB0.76
C1A—C2A1.433 (7)C1B—C2B1.427 (6)
C2A—C3A1.365 (7)C2B—C3B1.358 (7)
C2A—H2AA0.93C2B—H2BA0.93
C3A—C4A1.413 (7)C3B—C4B1.422 (7)
C3A—H3AA0.93C3B—H3BA0.93
C4A—C5A1.364 (7)C4B—C5B1.364 (6)
C5A—H5AA0.93C5B—H5BA0.93
S1A—O5A1.455 (4)S1B—O5B1.453 (4)
S1A—O6A1.464 (4)S1B—O4B1.461 (4)
S1A—O4A1.473 (4)S1B—O6B1.475 (4)
S1A—C9A1.765 (4)S1B—C9B1.764 (5)
O1A—C6A1.343 (5)O1B—C6B1.347 (6)
O1A—H1OA0.82O1B—H1OB0.82
O2A—C12A1.225 (6)O2B—C12B1.230 (6)
O3A—C12A1.319 (6)O3B—C12B1.322 (6)
O3A—H2OA0.90O3B—H2OB0.89
C6A—C7A1.399 (6)C6B—C7B1.400 (6)
C6A—C11A1.417 (6)C6B—C11B1.414 (6)
C7A—C8A1.384 (6)C7B—C8B1.384 (7)
C7A—H7AA0.93C7B—H7BA0.93
C8A—C9A1.395 (7)C8B—C9B1.399 (7)
C8A—H8AA0.93C8B—H8BA0.93
C9A—C10A1.386 (6)C9B—C10B1.379 (6)
C10A—C11A1.397 (6)C10B—C11B1.397 (6)
C10A—H10A0.93C10B—H10B0.93
C11A—C12A1.478 (6)C11B—C12B1.472 (6)
C1A—N1A—C5A123.9 (4)C1B—N1B—C5B123.8 (4)
C1A—N1A—H1NA126.9C1B—N1B—H1NB113.6
C5A—N1A—H1NA109.2C5B—N1B—H1NB122.5
C1A—N2A—H2AB112.1C1B—N2B—H2NB123.2
C1A—N2A—H2NA135.2C1B—N2B—H3NB122.4
H2AB—N2A—H2NA112.7H2NB—N2B—H3NB114.2
N2A—C1A—N1A119.7 (5)N2B—C1B—N1B119.9 (4)
N2A—C1A—C2A123.3 (5)N2B—C1B—C2B123.1 (5)
N1A—C1A—C2A117.1 (4)N1B—C1B—C2B117.0 (4)
C3A—C2A—C1A120.3 (5)C3B—C2B—C1B121.0 (5)
C3A—C2A—H2AA119.9C3B—C2B—H2BA119.5
C1A—C2A—H2AA119.9C1B—C2B—H2BA119.5
C2A—C3A—C4A119.8 (5)C2B—C3B—C4B119.2 (4)
C2A—C3A—H3AA120.1C2B—C3B—H3BA120.4
C4A—C3A—H3AA120.1C4B—C3B—H3BA120.4
C5A—C4A—C3A119.5 (4)C5B—C4B—C3B119.4 (4)
C5A—C4A—Br1A118.9 (4)C5B—C4B—Br1B119.3 (4)
C3A—C4A—Br1A121.5 (4)C3B—C4B—Br1B121.3 (3)
C4A—C5A—N1A119.5 (5)N1B—C5B—C4B119.7 (5)
C4A—C5A—H5AA120.3N1B—C5B—H5BA120.2
N1A—C5A—H5AA120.3C4B—C5B—H5BA120.2
O5A—S1A—O6A112.6 (2)O5B—S1B—O4B113.7 (3)
O5A—S1A—O4A112.6 (2)O5B—S1B—O6B111.5 (3)
O6A—S1A—O4A111.7 (2)O4B—S1B—O6B111.1 (2)
O5A—S1A—C9A106.2 (2)O5B—S1B—C9B106.3 (2)
O6A—S1A—C9A107.2 (2)O4B—S1B—C9B107.4 (2)
O4A—S1A—C9A106.0 (2)O6B—S1B—C9B106.3 (2)
C6A—O1A—H1OA96.5C6B—O1B—H1OB111.2
C12A—O3A—H2OA109.7C12B—O3B—H2OB113.5
O1A—C6A—C7A117.7 (4)O1B—C6B—C7B118.0 (4)
O1A—C6A—C11A123.0 (4)O1B—C6B—C11B122.7 (4)
C7A—C6A—C11A119.3 (4)C7B—C6B—C11B119.3 (4)
C8A—C7A—C6A120.5 (4)C8B—C7B—C6B120.5 (4)
C8A—C7A—H7AA119.7C8B—C7B—H7BA119.7
C6A—C7A—H7AA119.7C6B—C7B—H7BA119.7
C7A—C8A—C9A120.0 (4)C7B—C8B—C9B119.9 (4)
C7A—C8A—H8AA120.0C7B—C8B—H8BA120.1
C9A—C8A—H8AA120.0C9B—C8B—H8BA120.1
C10A—C9A—C8A120.4 (4)C10B—C9B—C8B120.5 (4)
C10A—C9A—S1A119.1 (4)C10B—C9B—S1B119.2 (4)
C8A—C9A—S1A120.5 (3)C8B—C9B—S1B120.2 (3)
C9A—C10A—C11A120.2 (4)C9B—C10B—C11B120.3 (4)
C9A—C10A—H10A119.9C9B—C10B—H10B119.9
C11A—C10A—H10A119.9C11B—C10B—H10B119.9
C10A—C11A—C6A119.5 (4)C10B—C11B—C6B119.6 (4)
C10A—C11A—C12A121.4 (4)C10B—C11B—C12B121.5 (4)
C6A—C11A—C12A119.1 (4)C6B—C11B—C12B118.9 (4)
O2A—C12A—O3A123.4 (4)O2B—C12B—O3B122.1 (4)
O2A—C12A—C11A122.1 (4)O2B—C12B—C11B122.6 (4)
O3A—C12A—C11A114.4 (4)O3B—C12B—C11B115.3 (4)
C5A—N1A—C1A—N2A−179.5 (5)C5B—N1B—C1B—N2B−179.8 (4)
C5A—N1A—C1A—C2A0.6 (7)C5B—N1B—C1B—C2B−0.9 (7)
N2A—C1A—C2A—C3A−179.5 (5)N2B—C1B—C2B—C3B179.6 (5)
N1A—C1A—C2A—C3A0.3 (7)N1B—C1B—C2B—C3B0.7 (7)
C1A—C2A—C3A—C4A−0.9 (7)C1B—C2B—C3B—C4B−0.8 (7)
C2A—C3A—C4A—C5A0.7 (7)C2B—C3B—C4B—C5B1.0 (7)
C2A—C3A—C4A—Br1A179.1 (4)C2B—C3B—C4B—Br1B−177.6 (4)
C3A—C4A—C5A—N1A0.2 (7)C1B—N1B—C5B—C4B1.1 (7)
Br1A—C4A—C5A—N1A−178.3 (3)C3B—C4B—C5B—N1B−1.1 (7)
C1A—N1A—C5A—C4A−0.9 (7)Br1B—C4B—C5B—N1B177.5 (3)
O1A—C6A—C7A—C8A−176.8 (4)O1B—C6B—C7B—C8B−178.8 (5)
C11A—C6A—C7A—C8A3.1 (7)C11B—C6B—C7B—C8B0.6 (7)
C6A—C7A—C8A—C9A0.1 (7)C6B—C7B—C8B—C9B0.0 (8)
C7A—C8A—C9A—C10A−2.9 (7)C7B—C8B—C9B—C10B−0.9 (8)
C7A—C8A—C9A—S1A179.6 (4)C7B—C8B—C9B—S1B−177.1 (4)
O5A—S1A—C9A—C10A22.9 (4)O5B—S1B—C9B—C10B27.2 (5)
O6A—S1A—C9A—C10A143.5 (4)O4B—S1B—C9B—C10B149.2 (4)
O4A—S1A—C9A—C10A−97.1 (4)O6B—S1B—C9B—C10B−91.7 (4)
O5A—S1A—C9A—C8A−159.7 (4)O5B—S1B—C9B—C8B−156.5 (4)
O6A—S1A—C9A—C8A−39.1 (4)O4B—S1B—C9B—C8B−34.5 (5)
O4A—S1A—C9A—C8A80.4 (4)O6B—S1B—C9B—C8B84.6 (4)
C8A—C9A—C10A—C11A2.5 (7)C8B—C9B—C10B—C11B1.0 (7)
S1A—C9A—C10A—C11A179.9 (3)S1B—C9B—C10B—C11B177.3 (3)
C9A—C10A—C11A—C6A0.8 (7)C9B—C10B—C11B—C6B−0.4 (7)
C9A—C10A—C11A—C12A−178.2 (4)C9B—C10B—C11B—C12B−177.9 (4)
O1A—C6A—C11A—C10A176.4 (4)O1B—C6B—C11B—C10B178.9 (4)
C7A—C6A—C11A—C10A−3.5 (7)C7B—C6B—C11B—C10B−0.5 (7)
O1A—C6A—C11A—C12A−4.6 (7)O1B—C6B—C11B—C12B−3.5 (7)
C7A—C6A—C11A—C12A175.5 (4)C7B—C6B—C11B—C12B177.1 (4)
C10A—C11A—C12A—O2A−175.6 (5)C10B—C11B—C12B—O2B−177.5 (5)
C6A—C11A—C12A—O2A5.4 (7)C6B—C11B—C12B—O2B5.0 (7)
C10A—C11A—C12A—O3A7.2 (7)C10B—C11B—C12B—O3B2.6 (6)
C6A—C11A—C12A—O3A−171.8 (4)C6B—C11B—C12B—O3B−175.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O4B0.991.862.811 (6)160
N2A—H2AB···O6Bi0.902.233.113 (6)166
N2A—H2NA···O5B0.802.222.919 (6)146
N2A—H2NA···O2Ai0.802.262.807 (6)126
O1A—H1OA···O2A0.821.822.596 (5)158
O3A—H2OA···O4B0.902.603.250 (5)130
O3A—H2OA···O6B0.901.772.649 (5)165
N1B—H1NB···O6Aii0.842.132.859 (6)145
N2B—H2NB···O5Aii0.832.343.006 (5)138
N2B—H3NB···O4A0.762.273.024 (6)175
O1B—H1OB···O2B0.811.892.582 (5)143
O1B—H1OB···O5Aiii0.812.423.023 (5)131
O3B—H2OB···O4Aiv0.891.792.661 (5)166
C5A—H5AA···O1Av0.932.563.188 (6)125
C10A—H10A···O1Biii0.932.563.406 (6)151
C10B—H10B···O1Ai0.932.533.364 (6)150

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) x, y, z+1; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5165).

References

  • Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776–o778.
  • Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr.33, 269–276.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o663. [PMC free article] [PubMed]
  • Jin, Z. M., Pan, Y. J., Liu, J. G. & Xu, D. J. (2000). J. Chem. Crystallogr.30, 195–198.
  • Krizanovic, O., Sabat, M., Beyerle-Pfnur, R. & Lippert, B. (1993). J. Am. Chem. Soc.115, 5538–5548.
  • Lah, N., Segedin, P. & Leban, I. (2002). Struct. Chem.13, 357–360.
  • Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Román, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.
  • Navarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21–22.
  • Qin, J. G., Su, N. B., Dai, C. Y., Yang, C. L., Liu, D. Y., Day, M. W., Wu, B. C. & Chen, C. T. (1999). Polyhedron, 18, 3461–3464.
  • Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1935–o1936. [PMC free article] [PubMed]
  • Ren, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). Jiegou Huaxue, 21, 38–41.
  • Rivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). Dalton Trans. pp. 3339–3349.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yip, J. H. K., Feng, R. & Vittal, J. J. (1999). Inorg. Chem.38, 3586–3589. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography