PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1177.
Published online 2010 August 28. doi:  10.1107/S1600536810033453
PMCID: PMC3007835

{6,6′-Dimeth­oxy-2,2′-[(cyclo­hexane-1,2-di­yl)bis­(nitriliomethyl­idyne)]diphenolato}trinitratolanthanum(III) methanol monosolvate

Abstract

In the title mononuclear complex, [La(NO3)3(C22H26N2O4)]·CH3OH, the LaIII ion is coordinated by three bidentate nitrate counter-ions and one zwitterionic 6,6′-dimeth­oxy-2,2′-[(cyclo­hexane-1,2- di­yl)bis­(nitriliomethyl­idyne)]diphenolate ligand through two phenolate and two meth­oxy O atoms, while the protonated N atoms remain uncoordinated. H atoms located on the two N atoms are involved in intra­molecular hydrogen bonds with the deprotonated phenol O atoms, indicating that proton migration occurs during the lanthanum complexation.

Related literature

For the preparation of the ligand, see: Koner et al. (2005 [triangle]). For a related structure, see: Yan et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1177-scheme1.jpg

Experimental

Crystal data

  • [La(NO3)3(C22H26N2O4)]·CH4O
  • M r = 739.43
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1177-efi1.jpg
  • a = 9.7809 (4) Å
  • b = 12.8783 (5) Å
  • c = 13.0904 (5) Å
  • α = 79.374 (1)°
  • β = 68.743 (1)°
  • γ = 82.270 (1)°
  • V = 1506.22 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.49 mm−1
  • T = 293 K
  • 0.23 × 0.20 × 0.16 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.725, T max = 0.796
  • 10874 measured reflections
  • 7145 independent reflections
  • 6526 reflections with I > 2σ(I)
  • R int = 0.010

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.092
  • S = 1.01
  • 7145 reflections
  • 389 parameters
  • 38 restraints
  • H-atom parameters constrained
  • Δρmax = 0.97 e Å−3
  • Δρmin = −0.77 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033453/vm2037sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033453/vm2037Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (Nos. 20872030 and 20972043), Heilongjiang Province (Nos. 2009RFXXG201, GC09A402 and 2010 t d03) and Heilongjiang University.

supplementary crystallographic information

Comment

Salen-type ligands are capable to incorporate lanthanide ions and to form complexes in the outer coordination site. Such complexes are potentially used in magnets and optics. In continuation of our studies of salen-type lanthanide complexes (Yan et al., 2009), we present here the crystal structure of the title compound. As shown in Fig. 1, the LaIII ion is coordinated to three bidentate nitrate counterions and one ligand that utilizes two hydroxyl oxygen atoms and two methoxyl oxygen atoms, while the nitrogen atoms remain uncoordinated (Koner et al., 2005). The LaIII ion presents a narrow spread in La—O bond distances [2.406 (2)–2.787 (2) Å], and the La—N bond distances are relatively longer [3.034 (4) and 3.048 (3) Å]. Hydrogen atoms located on the two nitrogen atoms are involved in intramolecular hydrogen bonds with the deprotonated phenol oxygen atoms (Table 1), which might contribute to the stability of the whole structure.

Experimental

To a CH2Cl2 solution (5 ml) of H2L (0.0382 g, 0.1 mmol) under stirring was slowly added a MeCN solution (5 ml) of La(NO3)3.6H2O (0.0433 g, 0.1 mmol) at room temperature. The diethylether was allowed to diffuse slowly into the filtrate at room temperature. The light yellow crystals were obtained in one week. (H2L)La(NO3)3.CH3OH. Yield: 0.0426 g (57.4 wt%). Elemental Anal. Calc. for C23H30N5O14La: C, 37.36; H, 4.09; N, 9.47 wt%, Found: C, 37.21; H, 4.15; N, 9.44 wt%.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97Å (methylene C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methly C) and with Uiso(H) = 1.5Ueq(C). The N-bound H atoms were initially located in a difference Fourier map and they were refined with N—H=0.85 Å. H atoms bound to O atoms were found from the Fourier difference map, and the distance is refined in the normal range with Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Crystal data

[La(NO3)3(C22H26N2O4)]·CH4OZ = 2
Mr = 739.43F(000) = 744
Triclinic, P1Dx = 1.630 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7809 (4) ÅCell parameters from 6687 reflections
b = 12.8783 (5) Åθ = 2.7–28.3°
c = 13.0904 (5) ŵ = 1.49 mm1
α = 79.374 (1)°T = 293 K
β = 68.743 (1)°Block, yellow
γ = 82.270 (1)°0.23 × 0.20 × 0.16 mm
V = 1506.22 (10) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer7145 independent reflections
Radiation source: fine-focus sealed tube6526 reflections with I > 2σ(I)
graphiteRint = 0.010
Detector resolution: 10.000 pixels mm-1θmax = 28.3°, θmin = 2.7°
ω scanh = −12→12
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −17→10
Tmin = 0.725, Tmax = 0.796l = −17→17
10874 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.052P)2 + 1.3148P] where P = (Fo2 + 2Fc2)/3
7145 reflections(Δ/σ)max = 0.011
389 parametersΔρmax = 0.97 e Å3
38 restraintsΔρmin = −0.77 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
La10.172411 (19)0.227443 (12)0.702241 (13)0.04350 (7)
C10.2772 (3)0.3560 (2)0.4366 (2)0.0404 (6)
C20.2940 (3)0.2558 (2)0.4018 (3)0.0419 (6)
C30.3415 (3)0.2462 (3)0.2918 (3)0.0482 (7)
H3A0.35280.17970.27030.058*
C40.3735 (4)0.3370 (3)0.2111 (3)0.0533 (8)
H4A0.40720.32990.13640.064*
C50.3555 (4)0.4351 (3)0.2413 (3)0.0483 (7)
H5A0.37550.49460.18730.058*
C60.3065 (3)0.4467 (2)0.3548 (2)0.0392 (6)
C70.2909 (3)0.5487 (2)0.3870 (2)0.0414 (6)
H7A0.30620.60770.33240.050*
C80.2394 (3)0.6651 (2)0.5270 (2)0.0394 (6)
H8A0.26160.72000.46180.047*
C90.3472 (4)0.6692 (3)0.5844 (3)0.0532 (8)
H9A0.44680.65530.53460.064*
H9B0.32860.61530.64920.064*
C100.3307 (4)0.7787 (3)0.6190 (4)0.0651 (10)
H10A0.39640.77980.65930.078*
H10B0.35930.83140.55320.078*
C110.1746 (4)0.8071 (3)0.6911 (3)0.0562 (8)
H11A0.16660.87940.70520.067*
H11B0.15120.76100.76170.067*
C120.0645 (4)0.7966 (2)0.6370 (3)0.0497 (7)
H12A0.07800.85080.57270.060*
H12B−0.03430.80860.68880.060*
C130.0799 (3)0.6883 (2)0.6012 (3)0.0408 (6)
H13A0.01620.69050.55780.049*
C14−0.0445 (3)0.6076 (2)0.7970 (3)0.0451 (6)
H14A−0.07650.67430.81800.054*
C15−0.0888 (3)0.5169 (3)0.8781 (3)0.0450 (6)
C16−0.1899 (4)0.5304 (3)0.9847 (3)0.0554 (8)
H16A−0.21880.59811.00380.066*
C17−0.2449 (4)0.4451 (3)1.0591 (3)0.0600 (9)
H17A−0.31190.45481.12890.072*
C18−0.2024 (4)0.3425 (3)1.0326 (3)0.0544 (8)
H18A−0.24340.28481.08380.065*
C19−0.1002 (3)0.3270 (3)0.9312 (3)0.0453 (6)
C20−0.0405 (3)0.4140 (2)0.8507 (3)0.0446 (6)
C21−0.1055 (5)0.1379 (3)0.9726 (4)0.0780 (13)
H21A−0.18380.15971.03610.117*
H21B−0.02890.09790.99570.117*
H21C−0.14250.09480.93740.117*
C220.2813 (5)0.0690 (3)0.4624 (4)0.0691 (11)
H22A0.31260.07210.38350.104*
H22B0.18980.03610.49660.104*
H22C0.35440.02830.48910.104*
C230.2873 (10)0.0899 (7)0.0851 (7)0.144 (3)
H290.37820.10740.02690.216*
H300.25050.03110.06990.216*
H310.30390.07100.15440.216*
N10.2565 (3)0.56252 (19)0.4883 (2)0.0435 (5)
H1A0.24230.50700.53760.052*
N20.0379 (3)0.6013 (2)0.6959 (2)0.0444 (5)
H2A0.07320.53870.68130.053*
N30.3925 (4)0.2989 (3)0.7882 (3)0.0685 (9)
N40.3331 (4)0.0205 (2)0.7668 (3)0.0568 (7)
N5−0.0827 (4)0.1433 (3)0.6708 (3)0.0700 (9)
O10.2366 (3)0.36209 (17)0.54227 (18)0.0551 (6)
O20.2617 (3)0.17450 (17)0.4894 (2)0.0548 (6)
O30.0536 (3)0.39767 (17)0.75338 (19)0.0569 (6)
O4−0.0473 (3)0.23020 (17)0.89550 (19)0.0536 (6)
O50.2776 (4)0.2560 (3)0.8491 (2)0.0817 (9)
O60.4763 (5)0.3239 (4)0.8270 (3)0.1080 (14)
O70.4123 (4)0.3163 (3)0.6873 (3)0.0898 (10)
O80.2108 (3)0.0497 (2)0.8293 (3)0.0755 (8)
O90.4015 (4)−0.0591 (3)0.7944 (3)0.0891 (10)
O100.3813 (4)0.0756 (3)0.6739 (3)0.0857 (10)
O110.0096 (3)0.0836 (2)0.7053 (3)0.0698 (7)
O12−0.1833 (5)0.1093 (4)0.6569 (4)0.1176 (16)
O13−0.0650 (3)0.2414 (2)0.6515 (3)0.0732 (8)
O140.1852 (7)0.1766 (5)0.0913 (5)0.164 (2)
H140.22290.22910.04570.246*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
La10.05179 (11)0.03034 (9)0.03740 (10)−0.00171 (7)−0.00476 (7)−0.00129 (6)
C10.0391 (13)0.0398 (14)0.0375 (14)−0.0013 (11)−0.0082 (11)−0.0056 (11)
C20.0384 (13)0.0390 (14)0.0446 (15)0.0008 (11)−0.0106 (11)−0.0073 (12)
C30.0464 (15)0.0504 (16)0.0498 (17)0.0057 (13)−0.0171 (13)−0.0183 (14)
C40.0576 (18)0.065 (2)0.0374 (15)−0.0006 (16)−0.0155 (14)−0.0125 (15)
C50.0493 (16)0.0564 (18)0.0371 (14)−0.0064 (14)−0.0143 (12)−0.0012 (13)
C60.0370 (13)0.0406 (14)0.0367 (13)−0.0040 (11)−0.0099 (11)−0.0028 (11)
C70.0413 (13)0.0408 (15)0.0377 (14)−0.0076 (11)−0.0101 (11)0.0005 (11)
C80.0426 (14)0.0314 (12)0.0422 (14)−0.0062 (11)−0.0130 (11)−0.0013 (11)
C90.0431 (15)0.059 (2)0.059 (2)−0.0016 (14)−0.0205 (14)−0.0083 (16)
C100.059 (2)0.064 (2)0.085 (3)−0.0135 (18)−0.0314 (19)−0.020 (2)
C110.068 (2)0.0455 (17)0.062 (2)−0.0092 (15)−0.0260 (17)−0.0141 (15)
C120.0541 (17)0.0343 (14)0.0599 (19)0.0000 (13)−0.0207 (15)−0.0055 (13)
C130.0413 (13)0.0342 (13)0.0475 (15)−0.0023 (11)−0.0177 (12)−0.0033 (11)
C140.0431 (14)0.0388 (14)0.0508 (17)0.0008 (12)−0.0128 (13)−0.0105 (13)
C150.0427 (14)0.0448 (16)0.0417 (15)−0.0012 (12)−0.0074 (12)−0.0082 (12)
C160.0562 (18)0.058 (2)0.0438 (17)0.0057 (15)−0.0068 (14)−0.0160 (15)
C170.0538 (18)0.074 (2)0.0383 (16)0.0018 (17)−0.0002 (14)−0.0112 (16)
C180.0495 (16)0.061 (2)0.0397 (16)−0.0070 (15)−0.0043 (13)0.0031 (14)
C190.0432 (14)0.0440 (15)0.0403 (15)−0.0018 (12)−0.0074 (12)−0.0011 (12)
C200.0411 (14)0.0410 (15)0.0416 (15)−0.0011 (12)−0.0045 (12)−0.0034 (12)
C210.089 (3)0.0441 (19)0.069 (3)−0.0140 (19)0.004 (2)0.0125 (18)
C220.095 (3)0.0348 (16)0.068 (2)−0.0024 (17)−0.015 (2)−0.0143 (16)
C230.162 (4)0.146 (4)0.137 (4)−0.019 (3)−0.061 (3)−0.028 (3)
N10.0522 (13)0.0331 (11)0.0386 (12)−0.0058 (10)−0.0098 (10)0.0001 (9)
N20.0450 (12)0.0350 (12)0.0454 (13)−0.0035 (10)−0.0069 (10)−0.0048 (10)
N30.076 (2)0.065 (2)0.060 (2)−0.0281 (17)−0.0106 (16)−0.0104 (16)
N40.0677 (18)0.0447 (15)0.0576 (17)0.0093 (13)−0.0234 (15)−0.0126 (13)
N50.086 (2)0.069 (2)0.0593 (19)−0.0215 (19)−0.0333 (18)0.0070 (16)
O10.0816 (16)0.0351 (10)0.0339 (10)−0.0054 (10)−0.0034 (10)−0.0029 (8)
O20.0737 (15)0.0334 (10)0.0478 (12)0.0012 (10)−0.0102 (11)−0.0093 (9)
O30.0665 (14)0.0347 (11)0.0437 (12)−0.0009 (10)0.0087 (10)−0.0023 (9)
O40.0587 (13)0.0373 (11)0.0471 (12)−0.0066 (10)−0.0015 (10)0.0048 (9)
O50.0813 (19)0.109 (3)0.0504 (15)−0.0419 (19)−0.0067 (14)−0.0084 (16)
O60.104 (3)0.144 (4)0.089 (2)−0.064 (3)−0.028 (2)−0.020 (2)
O70.087 (2)0.117 (3)0.0558 (17)−0.048 (2)−0.0052 (15)0.0010 (17)
O80.0697 (17)0.0567 (15)0.0721 (18)0.0137 (13)−0.0071 (14)0.0099 (13)
O90.094 (2)0.073 (2)0.085 (2)0.0350 (17)−0.0314 (18)−0.0055 (17)
O100.084 (2)0.082 (2)0.0566 (16)0.0293 (16)−0.0019 (14)−0.0002 (15)
O110.0806 (18)0.0499 (14)0.0781 (19)−0.0116 (13)−0.0315 (15)0.0058 (13)
O120.138 (4)0.110 (3)0.139 (4)−0.052 (3)−0.093 (3)0.021 (3)
O130.0836 (19)0.0607 (17)0.0798 (19)−0.0035 (14)−0.0426 (16)0.0065 (14)
O140.181 (3)0.165 (3)0.146 (3)0.001 (3)−0.052 (2)−0.044 (3)

Geometric parameters (Å, °)

La1—O12.406 (2)C12—H12B0.9700
La1—O32.428 (2)C13—N21.484 (4)
La1—O52.586 (3)C13—H13A0.9800
La1—O112.587 (3)C14—N21.287 (4)
La1—O102.604 (3)C14—C151.423 (4)
La1—O132.613 (3)C14—H14A0.9300
La1—O82.639 (3)C15—C201.411 (4)
La1—O42.663 (2)C15—C161.414 (4)
La1—O72.676 (3)C16—C171.352 (5)
La1—O22.787 (2)C16—H16A0.9300
La1—N53.034 (4)C17—C181.398 (5)
La1—N43.048 (3)C17—H17A0.9300
C1—O11.308 (4)C18—C191.372 (4)
C1—C61.415 (4)C18—H18A0.9300
C1—C21.416 (4)C19—O41.381 (4)
C2—C31.367 (4)C19—C201.415 (4)
C2—O21.376 (4)C20—O31.308 (4)
C3—C41.409 (5)C21—O41.441 (4)
C3—H3A0.9300C21—H21A0.9600
C4—C51.364 (5)C21—H21B0.9600
C4—H4A0.9300C21—H21C0.9600
C5—C61.415 (4)C22—O21.437 (4)
C5—H5A0.9300C22—H22A0.9600
C6—C71.425 (4)C22—H22B0.9600
C7—N11.285 (4)C22—H22C0.9600
C7—H7A0.9300C23—O141.388 (7)
C8—N11.468 (4)C23—H290.9600
C8—C91.510 (4)C23—H300.9600
C8—C131.533 (4)C23—H310.9600
C8—H8A0.9800N1—H1A0.8600
C9—C101.530 (5)N2—H2A0.8600
C9—H9A0.9700N3—O61.211 (5)
C9—H9B0.9700N3—O71.244 (5)
C10—C111.513 (5)N3—O51.249 (4)
C10—H10A0.9700N4—O91.218 (4)
C10—H10B0.9700N4—O81.235 (4)
C11—C121.518 (5)N4—O101.249 (4)
C11—H11A0.9700N5—O121.213 (5)
C11—H11B0.9700N5—O111.261 (5)
C12—C131.523 (4)N5—O131.264 (5)
C12—H12A0.9700O14—H140.8416
O1—La1—O370.12 (7)C11—C10—C9111.9 (3)
O1—La1—O5112.10 (10)C11—C10—H10A109.2
O3—La1—O577.05 (11)C9—C10—H10A109.2
O1—La1—O11117.56 (9)C11—C10—H10B109.2
O3—La1—O11118.33 (9)C9—C10—H10B109.2
O5—La1—O11130.32 (10)H10A—C10—H10B107.9
O1—La1—O10108.80 (9)C10—C11—C12111.8 (3)
O3—La1—O10155.24 (12)C10—C11—H11A109.3
O5—La1—O1080.89 (12)C12—C11—H11A109.3
O11—La1—O1084.70 (11)C10—C11—H11B109.3
O1—La1—O1380.42 (9)C12—C11—H11B109.3
O3—La1—O1377.22 (10)H11A—C11—H11B107.9
O5—La1—O13145.03 (11)C11—C12—C13112.8 (3)
O11—La1—O1348.74 (9)C11—C12—H12A109.0
O10—La1—O13127.48 (12)C13—C12—H12A109.0
O1—La1—O8156.29 (9)C11—C12—H12B109.0
O3—La1—O8129.69 (9)C13—C12—H12B109.0
O5—La1—O867.36 (12)H12A—C12—H12B107.8
O11—La1—O867.92 (10)N2—C13—C12113.2 (3)
O10—La1—O847.55 (9)N2—C13—C8109.2 (2)
O13—La1—O8114.12 (10)C12—C13—C8109.2 (2)
O1—La1—O4129.58 (7)N2—C13—H13A108.4
O3—La1—O461.66 (7)C12—C13—H13A108.4
O5—La1—O471.42 (9)C8—C13—H13A108.4
O11—La1—O476.31 (9)N2—C14—C15122.9 (3)
O10—La1—O4121.04 (8)N2—C14—H14A118.5
O13—La1—O475.68 (9)C15—C14—H14A118.5
O8—La1—O473.68 (8)C20—C15—C16120.0 (3)
O1—La1—O770.19 (10)C20—C15—C14120.5 (3)
O3—La1—O782.23 (11)C16—C15—C14119.4 (3)
O5—La1—O747.34 (9)C17—C16—C15120.2 (3)
O11—La1—O7159.25 (12)C17—C16—H16A119.9
O10—La1—O774.55 (13)C15—C16—H16A119.9
O13—La1—O7148.50 (11)C16—C17—C18120.9 (3)
O8—La1—O797.37 (11)C16—C17—H17A119.5
O4—La1—O7114.71 (9)C18—C17—H17A119.5
O1—La1—O259.31 (7)C19—C18—C17120.1 (3)
O3—La1—O2124.53 (8)C19—C18—H18A120.0
O5—La1—O2141.26 (9)C17—C18—H18A120.0
O11—La1—O271.75 (9)C18—C19—O4125.9 (3)
O10—La1—O268.96 (9)C18—C19—C20120.8 (3)
O13—La1—O273.57 (9)O4—C19—C20113.3 (3)
O8—La1—O2105.25 (9)O3—C20—C15122.1 (3)
O4—La1—O2145.47 (8)O3—C20—C19119.9 (3)
O7—La1—O299.75 (9)C15—C20—C19117.9 (3)
O1—La1—N599.24 (9)O4—C21—H21A109.5
O3—La1—N598.20 (10)O4—C21—H21B109.5
O5—La1—N5143.84 (9)H21A—C21—H21B109.5
O11—La1—N524.29 (9)O4—C21—H21C109.5
O10—La1—N5106.26 (12)H21A—C21—H21C109.5
O13—La1—N524.45 (9)H21B—C21—H21C109.5
O8—La1—N591.04 (10)O2—C22—H22A109.5
O4—La1—N574.87 (9)O2—C22—H22B109.5
O7—La1—N5168.70 (10)H22A—C22—H22B109.5
O2—La1—N570.62 (9)O2—C22—H22C109.5
O1—La1—N4132.60 (9)H22A—C22—H22C109.5
O3—La1—N4146.68 (9)H22B—C22—H22C109.5
O5—La1—N471.57 (11)O14—C23—H29109.5
O11—La1—N476.25 (9)O14—C23—H30109.5
O10—La1—N423.91 (9)H29—C23—H30109.5
O13—La1—N4124.87 (9)O14—C23—H31109.5
O8—La1—N423.70 (8)H29—C23—H31109.5
O4—La1—N497.16 (8)H30—C23—H31109.5
O7—La1—N484.69 (11)C7—N1—C8125.6 (2)
O2—La1—N487.83 (7)C7—N1—H1A117.2
N5—La1—N4100.47 (10)C8—N1—H1A117.2
O1—C1—C6122.1 (3)C14—N2—C13128.3 (3)
O1—C1—C2119.6 (3)C14—N2—H2A115.8
C6—C1—C2118.3 (3)C13—N2—H2A115.8
C3—C2—O2126.5 (3)O6—N3—O7123.0 (4)
C3—C2—C1121.1 (3)O6—N3—O5120.9 (4)
O2—C2—C1112.4 (3)O7—N3—O5116.0 (3)
C2—C3—C4120.0 (3)O9—N4—O8121.2 (3)
C2—C3—H3A120.0O9—N4—O10122.1 (3)
C4—C3—H3A120.0O8—N4—O10116.7 (3)
C5—C4—C3120.7 (3)O9—N4—La1176.5 (3)
C5—C4—H4A119.6O8—N4—La159.21 (17)
C3—C4—H4A119.6O10—N4—La157.69 (17)
C4—C5—C6120.1 (3)O12—N5—O11122.3 (4)
C4—C5—H5A119.9O12—N5—O13121.3 (4)
C6—C5—H5A119.9O11—N5—O13116.3 (3)
C1—C6—C5119.8 (3)O12—N5—La1179.1 (4)
C1—C6—C7119.7 (3)O11—N5—La157.56 (19)
C5—C6—C7120.5 (3)O13—N5—La158.80 (19)
N1—C7—C6122.8 (3)C1—O1—La1131.06 (19)
N1—C7—H7A118.6C2—O2—C22116.7 (3)
C6—C7—H7A118.6C2—O2—La1117.55 (17)
N1—C8—C9111.1 (2)C22—O2—La1125.7 (2)
N1—C8—C13110.4 (2)C20—O3—La1125.86 (19)
C9—C8—C13112.1 (3)C19—O4—C21116.4 (3)
N1—C8—H8A107.7C19—O4—La1117.93 (17)
C9—C8—H8A107.7C21—O4—La1125.3 (2)
C13—C8—H8A107.7N3—O5—La1100.4 (2)
C8—C9—C10109.5 (3)N3—O7—La196.1 (2)
C8—C9—H9A109.8N4—O8—La197.1 (2)
C10—C9—H9A109.8N4—O10—La198.4 (2)
C8—C9—H9B109.8N5—O11—La198.1 (2)
C10—C9—H9B109.8N5—O13—La196.8 (2)
H9A—C9—H9B108.2C23—O14—H14111.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.862.562 (3)137.
N2—H2A···O30.861.892.592 (3)138.
O14—H14···O5i0.842.402.981 (7)127.

Symmetry codes: (i) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2037).

References

  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Koner, R., Lee, G. H., Wang, Y., Wei, H.-H. & Mohanta, S. (2005). Eur. J. Inorg. Chem. pp. 1500–1505.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yan, P.-F., Bao, Y., Li, H.-F. & Li, G.-M. (2009). Acta Cryst. E65, m832. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography