PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1129–m1130.
Published online 2010 August 18. doi:  10.1107/S1600536810032496
PMCID: PMC3007828

Di-μ-sulfato-bis­[diaqua­(1H-imidazo[4,5-f][1,10]phenanthroline)iron(II)] dihydrate

Abstract

The title dinuclear FeII complex, [Fe2(SO4)2(C13H8N4)2(H2O)4]·2H2O, is centrosymmetric. Two sulfate anions bridge two FeII cations to form the binuclear complex. Each FeII cation is coordinated by two N atoms from a 1H-imidazo[4,5-f][1,10]phenanthroline (IP) ligand, two O atoms from two sulfate anions and two water mol­ecules in a distorted octa­hedral geometry. Extensive O—H(...)O, N—H(...)O and O—H(...)N hydrogen bonding is present in the crystal structure. Weak π–π stacking is observed between parallel IP ring systems, the face-to-face separation being 3.428 (14) Å.

Related literature

For metal complexes with the 1H-imidazo[4,5-f][1,10]phenanthroline (IP) ligand, see: Liu et al. (2009 [triangle]); Stephenson et al. (2008 [triangle]); Wu et al. (1997 [triangle]); Yang et al. (2010 [triangle]); Yu (2009 [triangle]). For the synthesis of IP, see: Wu et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1129-scheme1.jpg

Experimental

Crystal data

  • [Fe2(SO4)2(C13H8N4)2(H2O)4]·2H2O
  • M r = 852.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1129-efi1.jpg
  • a = 10.2879 (9) Å
  • b = 9.0738 (8) Å
  • c = 17.0089 (16) Å
  • β = 98.892 (5)°
  • V = 1568.7 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.14 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002 [triangle]) T min = 0.673, T max = 1.000
  • 11834 measured reflections
  • 3500 independent reflections
  • 2884 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.099
  • S = 1.05
  • 3500 reflections
  • 259 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: CrystalClear (Rigaku, 2002 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]; molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032496/xu5012sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032496/xu5012Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20771024), the Natural Science Foundation of Fujian Province (grant No. 2008 J0142) and the Key Project Fund of Science and Technology of Fujian Province, China (grant No. 2008I0013).

supplementary crystallographic information

Comment

Transitional metal complexes of 1,10-Phenanthroline's derivatives still continue to attract intense interest not only because of their fascinating architectures but also because of the intriguing properties, such as magnetic, biological activity and optical properties. The IP ligand,as one of 1,10-Phenanthroline's derivatives, has recently gained a lot of interest with respect to synthesis of its novel metal compounds. It has been used to construct coordination frameworks by the direct interaction with metal ions or as secondary ligands to form discrete polynuclear, one-dimensional, two-dimensional and three-dimensional coordination networks. Its metal complexes are focused on Ru, Co, Ni, Cd, Cu, Mn and Zn complexes (Liu et al., 2009; Stephenson et al., 2008; Wu et al., 1997; Yang et al., 2010; Yu, 2009;). As an extension of the work on the structural characterization of IP complexes, the preparation and crystal structure of the title FeII complex is reported here.

In centrosymmetric dinuclear complex, the sulfate acts as an O—S—O bridge across two FeII cation, determining the formation of a dimer (Fig. 1).The FeII cation has a distorted octahedral coordination completed by two nitrogen atoms from one IP ligand, two oxygen atoms from water and two oxygen atoms from two sulfuric anions. The equatorial plane of the octahedron is defined by N1, O6, O2, O5 around Fe1, and the axial coordination sites are occupied by N2 and O1 atoms.

Strong hydrogen bonds exist in the structure (Table 2). The complicated three-dimensional hydrogen bonding network is shown in Fig. 2. The uncoordinated water molecular is a hydrogen bond acceptor from the coordinated water and a hydrogen bond donor to two O atoms of two sulfuric anions in two neighboring [Fe2(SO4)2(IP)2(H2O)2] species. The [Fe2(SO4)2(IP)2(H2O)2] molecules also form hydrogen bonds between themselves through O—H···N and N—H···O interactions from the imidazolyl ring. So [Fe2(SO4)2(C13H8N4)2(H2O)2] molecules and the uncoordinated water are connected by O—H···O, O—H···N and N—H···O hydrogen bonds into a three-dimensional network structure. There is also a π-π stacking interaction between the IP ligands of the neighboring [Fe2(SO4)2(IP)2(H2O)2] species with an interplanar separation of about 3.428 (14) Å [symmetry code = -x, 2 - y, -z].

Experimental

The IP was synthesized according to reference of Wu et al. (1997). A mixture of FeSO4.7H2O, benzene-1,4-dicarboxylic acid, IP and H2O in a molar ratio 1:1:1:556 was stirred for 1 h, then sealed in an 18 ml Teflon-lined stainless steel reactor and heated for 3 d at 433 K and autogeneous pressure. After allowing the reaction mixture to cool down to room temperature, yellow crystals were obtained.

Refinement

Water H atoms were located in a difference Fourier map and refined isotropically with restrained O—H distance = 0.84 (1) Å and H···H distance = 1.44 (1) Å. The other H atoms were generated geometrically with C—H = 0.93 and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title complound, showing 30% probability displacement ellipsoids with atoms numbering. H atoms have been omitted for clarity.
Fig. 2.
The three-dimensional hydrogen bonding network along the b axis.

Crystal data

[Fe2(SO4)2(C13H8N4)2(H2O)4]·2H2OF(000) = 872
Mr = 852.38Dx = 1.805 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3717 reflections
a = 10.2879 (9) Åθ = 3.0–27.5°
b = 9.0738 (8) ŵ = 1.14 mm1
c = 17.0089 (16) ÅT = 293 K
β = 98.892 (5)°Prism, yellow
V = 1568.7 (2) Å30.20 × 0.20 × 0.10 mm
Z = 2

Data collection

Rigaku Mercury CCD diffractometer3500 independent reflections
Radiation source: fine-focus sealed tube2884 reflections with I > 2σ(I)
graphiteRint = 0.040
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scanh = −13→13
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002)k = −11→11
Tmin = 0.673, Tmax = 1.000l = −22→21
11834 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0483P)2 + 0.6512P] where P = (Fo2 + 2Fc2)/3
3500 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.44 e Å3
9 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.31610 (3)0.68065 (4)−0.03898 (2)0.02489 (13)
S10.53353 (6)0.60216 (6)0.11438 (4)0.02472 (16)
O10.46200 (17)0.71051 (18)0.05947 (11)0.0298 (4)
O20.63573 (18)0.53106 (19)0.07634 (12)0.0348 (4)
O30.44027 (17)0.48994 (19)0.13588 (11)0.0314 (4)
O40.5938 (2)0.6791 (2)0.18664 (12)0.0402 (5)
O50.20448 (19)0.5633 (2)0.04180 (11)0.0347 (4)
O60.4329 (2)0.7669 (2)−0.11949 (14)0.0465 (5)
O70.4090 (4)1.0134 (3)−0.20216 (16)0.0697 (8)
N10.2437 (2)0.9048 (2)−0.03242 (12)0.0256 (5)
N20.1277 (2)0.6775 (2)−0.11677 (12)0.0261 (5)
N3−0.1442 (2)1.2057 (2)−0.13981 (14)0.0339 (5)
N4−0.2454 (2)1.0126 (2)−0.20243 (13)0.0329 (5)
H4B−0.30550.9614−0.23080.040*
C10.3070 (2)1.0173 (3)0.00618 (16)0.0297 (6)
H1A0.38911.00020.03620.036*
C20.2562 (3)1.1597 (3)0.00372 (17)0.0333 (6)
H2B0.30471.23580.03070.040*
C30.1336 (3)1.1870 (3)−0.03888 (16)0.0301 (6)
H3C0.09711.2809−0.03990.036*
C40.0648 (2)1.0710 (3)−0.08061 (15)0.0252 (5)
C5−0.0639 (2)1.0827 (3)−0.12661 (15)0.0265 (5)
C6−0.1251 (2)0.9628 (3)−0.16564 (14)0.0264 (5)
C7−0.0665 (2)0.8197 (3)−0.16491 (14)0.0244 (5)
C8−0.1246 (3)0.6951 (3)−0.20433 (16)0.0324 (6)
H8A−0.20790.7007−0.23450.039*
C9−0.0566 (3)0.5653 (3)−0.19772 (17)0.0339 (6)
H9A−0.09400.4804−0.22220.041*
C100.0698 (3)0.5616 (3)−0.15377 (16)0.0307 (6)
H10A0.11560.4728−0.15040.037*
C110.0604 (2)0.8071 (3)−0.12085 (14)0.0235 (5)
C120.1247 (2)0.9309 (2)−0.07685 (14)0.0225 (5)
C13−0.2508 (3)1.1563 (3)−0.18553 (17)0.0373 (7)
H13A−0.32261.2156−0.20420.045*
H20.266 (2)0.521 (3)0.0720 (16)0.061 (11)*
H30.484 (3)0.705 (2)−0.1358 (18)0.045 (9)*
H10.165 (4)0.631 (4)0.064 (2)0.113 (19)*
H50.410 (4)1.1018 (18)−0.187 (2)0.087 (15)*
H40.425 (4)0.847 (2)−0.145 (2)0.085 (14)*
H60.413 (4)1.001 (4)−0.2509 (9)0.080 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0230 (2)0.02412 (19)0.0261 (2)0.00472 (14)−0.00072 (15)0.00128 (14)
S10.0243 (3)0.0228 (3)0.0247 (3)0.0051 (2)−0.0034 (2)−0.0018 (2)
O10.0280 (9)0.0261 (8)0.0323 (10)0.0032 (7)−0.0052 (8)0.0037 (7)
O20.0306 (10)0.0254 (8)0.0496 (12)0.0044 (8)0.0099 (9)−0.0017 (9)
O30.0305 (9)0.0295 (9)0.0342 (10)0.0033 (8)0.0046 (8)0.0048 (8)
O40.0499 (12)0.0330 (10)0.0315 (10)0.0058 (9)−0.0135 (9)−0.0075 (8)
O50.0322 (10)0.0370 (10)0.0345 (11)0.0040 (9)0.0038 (9)0.0017 (9)
O60.0586 (14)0.0318 (10)0.0556 (14)0.0146 (10)0.0291 (12)0.0116 (10)
O70.137 (3)0.0325 (12)0.0432 (15)0.0165 (15)0.0272 (17)0.0078 (11)
N10.0226 (10)0.0277 (10)0.0254 (11)0.0019 (8)0.0008 (9)−0.0009 (9)
N20.0263 (10)0.0248 (10)0.0258 (11)0.0028 (8)0.0000 (9)−0.0003 (9)
N30.0335 (12)0.0325 (11)0.0342 (13)0.0094 (10)0.0004 (10)0.0014 (10)
N40.0255 (11)0.0399 (12)0.0304 (12)0.0024 (10)−0.0050 (9)−0.0004 (10)
C10.0215 (12)0.0322 (13)0.0331 (14)−0.0005 (10)−0.0023 (11)−0.0029 (11)
C20.0327 (14)0.0277 (12)0.0380 (15)−0.0059 (11)0.0006 (12)−0.0045 (12)
C30.0341 (14)0.0225 (11)0.0332 (14)0.0016 (10)0.0037 (12)−0.0001 (10)
C40.0258 (12)0.0255 (11)0.0241 (12)0.0031 (10)0.0035 (10)0.0017 (10)
C50.0278 (12)0.0257 (12)0.0254 (13)0.0066 (10)0.0020 (10)0.0020 (10)
C60.0227 (12)0.0337 (13)0.0220 (12)0.0049 (10)0.0013 (10)0.0013 (10)
C70.0231 (12)0.0268 (12)0.0230 (12)0.0024 (10)0.0027 (10)0.0000 (10)
C80.0245 (12)0.0376 (14)0.0330 (15)−0.0006 (11)−0.0020 (11)−0.0037 (11)
C90.0359 (14)0.0303 (13)0.0349 (15)−0.0052 (12)0.0034 (12)−0.0071 (11)
C100.0336 (14)0.0247 (11)0.0333 (14)0.0024 (11)0.0037 (12)−0.0009 (11)
C110.0227 (11)0.0260 (11)0.0219 (12)0.0025 (10)0.0036 (10)0.0003 (9)
C120.0219 (11)0.0229 (11)0.0225 (12)0.0031 (9)0.0027 (10)−0.0004 (9)
C130.0344 (15)0.0424 (15)0.0325 (15)0.0172 (12)−0.0027 (12)0.0040 (12)

Geometric parameters (Å, °)

Fe1—N12.175 (2)N4—C131.338 (4)
Fe1—N22.172 (2)N4—C61.373 (3)
Fe1—O12.0865 (17)N4—H4B0.8600
Fe1—O2i2.1065 (18)C1—C21.392 (4)
Fe1—O52.197 (2)C1—H1A0.9300
Fe1—O62.108 (2)C2—C31.377 (4)
S1—O41.4649 (18)C2—H2B0.9300
S1—O21.4665 (19)C3—C41.399 (3)
S1—O11.4723 (17)C3—H3C0.9300
S1—O31.4831 (19)C4—C121.411 (3)
O5—H20.84 (2)C4—C51.433 (3)
O5—H10.86 (4)C5—C61.375 (3)
O6—H30.84 (3)C6—C71.431 (3)
O6—H40.84 (2)C7—C81.400 (3)
O7—H50.842 (19)C7—C111.405 (3)
O7—H60.844 (18)C8—C91.366 (4)
N1—C11.329 (3)C8—H8A0.9300
N1—C121.356 (3)C9—C101.397 (4)
N2—C101.320 (3)C9—H9A0.9300
N2—C111.361 (3)C10—H10A0.9300
N3—C131.320 (4)C11—C121.452 (3)
N3—C51.387 (3)C13—H13A0.9300
O1—Fe1—O2i100.77 (7)N1—C1—C2123.0 (2)
O1—Fe1—O693.52 (9)N1—C1—H1A118.5
O2i—Fe1—O687.60 (8)C2—C1—H1A118.5
O1—Fe1—N2162.62 (8)C3—C2—C1119.5 (2)
O2i—Fe1—N291.93 (7)C3—C2—H2B120.3
O6—Fe1—N298.86 (9)C1—C2—H2B120.3
O1—Fe1—N192.70 (7)C2—C3—C4118.8 (2)
O2i—Fe1—N1165.19 (8)C2—C3—H3C120.6
O6—Fe1—N185.43 (8)C4—C3—H3C120.6
N2—Fe1—N176.29 (7)C3—C4—C12118.1 (2)
O1—Fe1—O586.66 (7)C3—C4—C5125.0 (2)
O2i—Fe1—O585.22 (8)C12—C4—C5116.9 (2)
O6—Fe1—O5172.72 (8)C6—C5—N3110.0 (2)
N2—Fe1—O582.59 (8)C6—C5—C4121.4 (2)
N1—Fe1—O5101.83 (8)N3—C5—C4128.7 (2)
O4—S1—O2109.92 (12)N4—C6—C5105.8 (2)
O4—S1—O1108.61 (10)N4—C6—C7130.6 (2)
O2—S1—O1109.63 (11)C5—C6—C7123.5 (2)
O4—S1—O3109.03 (12)C8—C7—C11118.8 (2)
O2—S1—O3110.00 (11)C8—C7—C6125.5 (2)
O1—S1—O3109.62 (10)C11—C7—C6115.7 (2)
S1—O1—Fe1130.50 (11)C9—C8—C7118.8 (2)
S1—O2—Fe1i138.81 (12)C9—C8—H8A120.6
Fe1—O5—H2100 (2)C7—C8—H8A120.6
Fe1—O5—H1105 (3)C8—C9—C10119.2 (2)
H2—O5—H1114.9 (18)C8—C9—H9A120.4
Fe1—O6—H3114.5 (19)C10—C9—H9A120.4
Fe1—O6—H4129 (2)N2—C10—C9123.4 (2)
H3—O6—H4114.8 (17)N2—C10—H10A118.3
H5—O7—H6115.9 (18)C9—C10—H10A118.3
C1—N1—C12118.2 (2)N2—C11—C7121.4 (2)
C1—N1—Fe1126.73 (16)N2—C11—C12117.0 (2)
C12—N1—Fe1114.93 (15)C7—C11—C12121.6 (2)
C10—N2—C11118.4 (2)N1—C12—C4122.2 (2)
C10—N2—Fe1126.54 (16)N1—C12—C11116.9 (2)
C11—N2—Fe1114.76 (15)C4—C12—C11120.8 (2)
C13—N3—C5104.0 (2)N3—C13—N4113.5 (2)
C13—N4—C6106.7 (2)N3—C13—H13A123.2
C13—N4—H4B126.7N4—C13—H13A123.2
C6—N4—H4B126.7
O4—S1—O1—Fe1−162.26 (14)C3—C4—C5—N30.5 (4)
O2—S1—O1—Fe177.62 (16)C12—C4—C5—N3179.7 (3)
O3—S1—O1—Fe1−43.22 (18)C13—N4—C6—C50.8 (3)
O2i—Fe1—O1—S1−28.46 (16)C13—N4—C6—C7−178.7 (3)
O6—Fe1—O1—S1−116.68 (15)N3—C5—C6—N4−0.8 (3)
N2—Fe1—O1—S1107.8 (2)C4—C5—C6—N4179.4 (2)
N1—Fe1—O1—S1157.73 (15)N3—C5—C6—C7178.8 (2)
O5—Fe1—O1—S156.03 (15)C4—C5—C6—C7−1.0 (4)
O4—S1—O2—Fe1i123.58 (18)N4—C6—C7—C80.1 (5)
O1—S1—O2—Fe1i−117.10 (18)C5—C6—C7—C8−179.4 (3)
O3—S1—O2—Fe1i3.5 (2)N4—C6—C7—C11179.6 (3)
O1—Fe1—N1—C118.0 (2)C5—C6—C7—C110.2 (4)
O2i—Fe1—N1—C1−137.6 (3)C11—C7—C8—C90.8 (4)
O6—Fe1—N1—C1−75.3 (2)C6—C7—C8—C9−179.6 (3)
N2—Fe1—N1—C1−175.6 (2)C7—C8—C9—C10−1.7 (4)
O5—Fe1—N1—C1105.1 (2)C11—N2—C10—C90.7 (4)
O1—Fe1—N1—C12−166.31 (17)Fe1—N2—C10—C9174.5 (2)
O2i—Fe1—N1—C1238.2 (4)C8—C9—C10—N21.0 (4)
O6—Fe1—N1—C12100.37 (18)C10—N2—C11—C7−1.6 (4)
N2—Fe1—N1—C120.08 (17)Fe1—N2—C11—C7−176.12 (19)
O5—Fe1—N1—C12−79.15 (18)C10—N2—C11—C12177.6 (2)
O1—Fe1—N2—C10−123.8 (3)Fe1—N2—C11—C123.1 (3)
O2i—Fe1—N2—C1013.4 (2)C8—C7—C11—N20.9 (4)
O6—Fe1—N2—C10101.3 (2)C6—C7—C11—N2−178.7 (2)
N1—Fe1—N2—C10−175.7 (2)C8—C7—C11—C12−178.3 (2)
O5—Fe1—N2—C10−71.5 (2)C6—C7—C11—C122.1 (4)
O1—Fe1—N2—C1150.2 (3)C1—N1—C12—C4−2.6 (4)
O2i—Fe1—N2—C11−172.64 (18)Fe1—N1—C12—C4−178.72 (19)
O6—Fe1—N2—C11−84.77 (19)C1—N1—C12—C11177.6 (2)
N1—Fe1—N2—C11−1.72 (17)Fe1—N1—C12—C111.5 (3)
O5—Fe1—N2—C11102.43 (18)C3—C4—C12—N12.2 (4)
C12—N1—C1—C20.8 (4)C5—C4—C12—N1−177.0 (2)
Fe1—N1—C1—C2176.3 (2)C3—C4—C12—C11−178.0 (2)
N1—C1—C2—C31.5 (4)C5—C4—C12—C112.7 (4)
C1—C2—C3—C4−1.8 (4)N2—C11—C12—N1−3.1 (3)
C2—C3—C4—C120.1 (4)C7—C11—C12—N1176.1 (2)
C2—C3—C4—C5179.3 (3)N2—C11—C12—C4177.1 (2)
C13—N3—C5—C60.4 (3)C7—C11—C12—C4−3.7 (4)
C13—N3—C5—C4−179.8 (3)C5—N3—C13—N40.1 (3)
C3—C4—C5—C6−179.7 (3)C6—N4—C13—N3−0.6 (3)
C12—C4—C5—C6−0.5 (4)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4B···O4ii0.862.052.891 (3)164
O5—H1···N3iii0.86 (4)2.00 (4)2.807 (3)157 (4)
O5—H2···O30.84 (2)1.97 (2)2.773 (3)159 (2)
O6—H3···O3i0.84 (3)1.93 (2)2.706 (3)152 (3)
O6—H4···O70.84 (2)1.79 (2)2.633 (3)178 (4)
O7—H5···O4iv0.84 (2)1.99 (2)2.803 (3)163 (3)
O7—H6···O3v0.84 (2)1.99 (2)2.823 (3)169 (3)

Symmetry codes: (ii) x−1, −y+3/2, z−1/2; (iii) −x, −y+2, −z; (i) −x+1, −y+1, −z; (iv) −x+1, −y+2, −z; (v) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5012).

References

  • Liu, J.-Q., Zhang, Y.-N., Wang, Y.-Y., Jin, J.-C., Lermontova, E. K. & Shi, Q.-Z. (2009). Dalton Trans. pp. 5365–5378. [PubMed]
  • Rigaku (2002). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stephenson, M. D., Prior, T. J. & Hardie, M. J. (2008). Cryst. Growth Des.8, 643–653.
  • Wu, J.-Z., Ye, B.-H., Wang, L., Ji, L.-N., Zhou, J.-Y., Li, R.-H. & Zhou, Z.-Y. (1997). J. Chem. Soc. Dalton Trans. pp. 1395–1401.
  • Yang, M.-X., Lin, S., Zheng, S.-N., Chen, X.-H. & Chen, L.-J. (2010). Inorg. Chem. Commun.13, 1043–1046.
  • Yu, J. (2009). Acta Cryst. E65, m618. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography