PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1140.
Published online 2010 August 21. doi:  10.1107/S1600536810032848
PMCID: PMC3007825

trans-Bis(ethyl­enediamine)­bis­{2-[N-(2-hy­droxy­eth­yl)oxamoyl­amino]­benzoato}nickel(II)

Abstract

The title mononuclear NiII complex, [Ni(C11H11N2O5)2(C2H8N2)2], is built up by inversion symmetry associated with the central Ni atom. The ethyl­enediamine ligands are non-planar. The r.m.s. deviation from the mean plane of the five-membered Ni–ethyl­amine chelate ring plane is 0.1945 Å. In the crystal structure, complex mol­ecules are linked to each other via N—H(...)O and O—-H(...)O hydrogen bonding through translation symmetry along the b and c axes, resulting in an extended supra­molecular network.

Related literature

For background to oxamido compounds, see: Ruiz et al. (1999 [triangle]); Ojima & Nonoyama (1988 [triangle]). For related structures, see: Icbudak et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1140-scheme1.jpg

Experimental

Crystal data

  • [Ni(C11H11N2O5)2(C2H8N2)2]
  • M r = 681.35
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1140-efi1.jpg
  • a = 8.266 (2) Å
  • b = 10.122 (3) Å
  • c = 10.260 (3) Å
  • α = 109.589 (3)°
  • β = 95.720 (3)°
  • γ = 103.788 (3)°
  • V = 770.1 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.70 mm−1
  • T = 298 K
  • 0.36 × 0.35 × 0.32 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.845, T max = 0.897
  • 4112 measured reflections
  • 2735 independent reflections
  • 2385 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.084
  • S = 1.07
  • 2735 reflections
  • 206 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810032848/si2287sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032848/si2287Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges the financial support of the Science Foundation of Xinjiang.

supplementary crystallographic information

Comment

Oxamido compounds and their complexes have been investigated extensively (Ruiz et al., 1999) by virtue of their bioactivities and the versatile bridging function (Ojima & Nonoyama, 1988). We selected 2-[N'-(ethanolamine)-oxamido]benzoate as a bridging ligand and ethylenediamine as another ligand to synthesize a new mononuclear nickel(II) compound, (I).

The title compound, (Fig. 1), is a mononuclear nickel(II) complex containing a total of 45 non-H atoms. The molecule is centrosymmetric with the central core Ni atom and the structure is similar to those seen previously in resemble compounds (Icbudak et al., 2003). The Ni1 atom is in a trans-octahedral coordination geometry. Here, O1 and O1ii [symmetry code: -x, -y + 1, -z + 1] are in axial positions [O1—Ni1—O1ii =180.0°] and the N atoms of the two ethylenediamine groups are in equatorial positions. The sum of the equatorial N—Ni—N angles is 360.0°, indicating a coplanarity for these atoms. The planar oxamide group (r.m.s. deviation 0.0056 Å) displays a transoid conformation and makes a dihedral angle of 4.2 (8)° with the benzene ring (r.m.s. deviation 0.0031 Å), whereas the ethanol plane is rotated out of the oxamide group by a dihedral angle of 73.4 (8)°.

In the crystal structure, the mononuclear molecules are linked by the N-H···O and O-H···O intermolecular hydrogen bonds into a two-dimensonal network extending parallel to the bc plane (Figure 2).

Experimental

To a stirred solution of N-benzyl-N'-(ethanolamine)oxamide (2mmol, 0.496g) in methanol(20ml), sodium ethoxide (0.136 g, 2mmol) and Ni(ClO4)2.6H2O (0.366g, 1mmol) was added. 10 min later, ethylenediamine (0.056 g, 1mmol) was added. The mixture was then stirred and heated at 323K for 6 h, then filtered. By slow evaporation of the filtrate, green crystals suitable for X-ray investigation were obtained after three weeks. Yield, 56%, analysis, calculated for C26H38N8O10Ni: C 45.83, H, 5.62; N 16.45%; found: C 45.81, H 5.68, N, 16.49%.

Refinement

H atoms were positioned geometrically [0.93 (CH), 0.97 (CH2), 0.86 (NH), 0.90 (NH2) and 0.82 (OH)Å] and constrained to ride on their parent atoms with Uiso(H) =1.2(1.5 for hydroxy O) Ueq(C/N).

Figures

Fig. 1.
The molecular structure of (I) with 30% displacement ellipsoids. Inversion related atoms, labelled A, complete the metal complex with [Symmetry code ii = -x, -y + 1, -z + 1].
Fig. 2.
Packing diagram of (I). The hydrogen bonds are shown by the dashed lines.

Crystal data

[Ni(C11H11N2O5)2(C2H8N2)2]Z = 1
Mr = 681.35F(000) = 358
Triclinic, P1Dx = 1.469 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.266 (2) ÅCell parameters from 2252 reflections
b = 10.122 (3) Åθ = 2.6–27.0°
c = 10.260 (3) ŵ = 0.70 mm1
α = 109.589 (3)°T = 298 K
β = 95.720 (3)°Block, green
γ = 103.788 (3)°0.36 × 0.35 × 0.32 mm
V = 770.1 (4) Å3

Data collection

Bruker SMART CCD diffractometer2735 independent reflections
Radiation source: fine-focus sealed tube2385 reflections with I > 2σ(I)
graphiteRint = 0.016
[var phi] and ω scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→5
Tmin = 0.845, Tmax = 0.897k = −12→12
4112 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0403P)2 + 0.172P] where P = (Fo2 + 2Fc2)/3
2735 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.00000.50000.50000.03350 (13)
O10.12334 (19)0.66239 (15)0.42423 (15)0.0405 (4)
O20.1944 (3)0.52116 (18)0.2362 (2)0.0746 (6)
O30.2826 (2)1.19597 (16)0.59663 (16)0.0515 (4)
O40.0627 (2)0.92690 (17)0.70836 (18)0.0548 (4)
O50.3278 (2)1.3059 (2)1.0935 (2)0.0739 (6)
H5A0.30301.38241.12740.111*
N10.2153 (2)0.94573 (18)0.49224 (17)0.0349 (4)
H10.15990.86780.50300.042*
N20.1282 (2)1.1741 (2)0.80736 (19)0.0435 (4)
H20.17381.25410.79580.052*
C10.1939 (3)0.6434 (2)0.3180 (2)0.0411 (5)
C20.2816 (2)0.7770 (2)0.2880 (2)0.0353 (5)
C30.3576 (3)0.7547 (3)0.1703 (2)0.0451 (5)
H30.35290.65970.11410.054*
C40.4394 (3)0.8697 (3)0.1350 (3)0.0493 (6)
H40.49000.85250.05630.059*
C50.4454 (3)1.0099 (3)0.2174 (3)0.0501 (6)
H50.49961.08780.19350.060*
C60.3726 (3)1.0370 (3)0.3347 (2)0.0442 (5)
H60.37801.13280.38930.053*
C70.2905 (2)0.9221 (2)0.3726 (2)0.0335 (4)
C80.2178 (3)1.0721 (2)0.5916 (2)0.0358 (5)
C90.1276 (3)1.0487 (2)0.7090 (2)0.0376 (5)
C100.0570 (3)1.1848 (3)0.9330 (2)0.0462 (6)
H10A−0.04331.10210.91020.055*
H10B0.02211.27360.96370.055*
C110.1807 (3)1.1869 (3)1.0509 (2)0.0515 (6)
H11A0.12601.19081.13080.062*
H11B0.21251.09661.02100.062*
N30.2112 (2)0.42116 (19)0.49185 (19)0.0400 (4)
H3A0.18410.33130.49600.048*
H3B0.24710.41480.41060.048*
N40.1301 (2)0.63455 (19)0.70438 (19)0.0418 (4)
H4A0.17430.72670.70920.050*
H4B0.05900.63600.76550.050*
C120.3456 (3)0.5236 (3)0.6128 (3)0.0516 (6)
H12A0.40370.60700.59160.062*
H12B0.42810.47520.63210.062*
C130.2663 (3)0.5744 (3)0.7395 (3)0.0518 (6)
H13A0.22020.49280.76750.062*
H13B0.35190.64900.81780.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0382 (2)0.0268 (2)0.0349 (2)0.01044 (15)0.00982 (16)0.00921 (16)
O10.0542 (9)0.0298 (8)0.0397 (8)0.0123 (6)0.0217 (7)0.0119 (6)
O20.1148 (16)0.0354 (10)0.0756 (13)0.0220 (10)0.0614 (12)0.0111 (9)
O30.0751 (12)0.0310 (9)0.0451 (9)0.0113 (8)0.0114 (8)0.0131 (7)
O40.0739 (11)0.0374 (9)0.0573 (11)0.0163 (8)0.0340 (9)0.0165 (8)
O50.0482 (10)0.0763 (14)0.0662 (13)0.0182 (10)0.0008 (9)−0.0093 (11)
N10.0416 (10)0.0286 (9)0.0358 (9)0.0091 (7)0.0120 (8)0.0132 (8)
N20.0546 (11)0.0363 (10)0.0374 (10)0.0167 (8)0.0110 (8)0.0079 (8)
C10.0479 (13)0.0354 (12)0.0418 (13)0.0143 (10)0.0166 (10)0.0129 (10)
C20.0339 (11)0.0402 (12)0.0334 (11)0.0119 (9)0.0093 (9)0.0143 (9)
C30.0471 (13)0.0517 (14)0.0393 (12)0.0180 (11)0.0163 (10)0.0157 (11)
C40.0446 (13)0.0674 (17)0.0418 (13)0.0146 (11)0.0195 (10)0.0257 (12)
C50.0462 (13)0.0561 (15)0.0523 (15)0.0053 (11)0.0146 (11)0.0305 (13)
C60.0473 (13)0.0410 (13)0.0451 (13)0.0092 (10)0.0116 (10)0.0187 (11)
C70.0295 (10)0.0390 (11)0.0328 (11)0.0092 (8)0.0046 (8)0.0151 (9)
C80.0414 (11)0.0291 (11)0.0349 (11)0.0116 (9)0.0007 (9)0.0105 (9)
C90.0404 (12)0.0361 (12)0.0365 (12)0.0158 (9)0.0064 (9)0.0108 (10)
C100.0445 (13)0.0459 (13)0.0408 (13)0.0175 (10)0.0102 (10)0.0035 (10)
C110.0575 (15)0.0591 (16)0.0387 (13)0.0267 (12)0.0135 (11)0.0113 (11)
N30.0437 (10)0.0362 (10)0.0447 (11)0.0155 (8)0.0149 (8)0.0163 (8)
N40.0481 (11)0.0346 (10)0.0401 (10)0.0108 (8)0.0100 (8)0.0111 (8)
C120.0397 (12)0.0485 (14)0.0643 (16)0.0127 (11)0.0071 (11)0.0191 (12)
C130.0501 (14)0.0504 (14)0.0467 (14)0.0111 (11)−0.0024 (11)0.0137 (12)

Geometric parameters (Å, °)

Ni1—N3i2.0829 (18)C4—C51.373 (4)
Ni1—N32.0829 (18)C4—H40.9300
Ni1—N4i2.0847 (18)C5—C61.374 (3)
Ni1—N42.0847 (18)C5—H50.9300
Ni1—O12.1357 (14)C6—C71.394 (3)
Ni1—O1i2.1357 (14)C6—H60.9300
O1—C11.267 (3)C8—C91.533 (3)
O2—C11.242 (3)C10—C111.495 (3)
O3—C81.222 (2)C10—H10A0.9700
O4—C91.219 (3)C10—H10B0.9700
O5—C111.401 (3)C11—H11A0.9700
O5—H5A0.8200C11—H11B0.9700
N1—C81.336 (3)N3—C121.471 (3)
N1—C71.406 (3)N3—H3A0.9000
N1—H10.8600N3—H3B0.9000
N2—C91.329 (3)N4—C131.470 (3)
N2—C101.452 (3)N4—H4A0.9000
N2—H20.8600N4—H4B0.9000
C1—C21.518 (3)C12—C131.505 (3)
C2—C31.392 (3)C12—H12A0.9700
C2—C71.413 (3)C12—H12B0.9700
C3—C41.379 (3)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
N3i—Ni1—N3180.000 (1)N1—C7—C2118.73 (17)
N3i—Ni1—N4i83.44 (7)O3—C8—N1127.5 (2)
N3—Ni1—N4i96.56 (7)O3—C8—C9120.27 (19)
N3i—Ni1—N496.56 (7)N1—C8—C9112.28 (17)
N3—Ni1—N483.44 (7)O4—C9—N2125.4 (2)
N4i—Ni1—N4180.000 (1)O4—C9—C8122.18 (19)
N3i—Ni1—O190.32 (6)N2—C9—C8112.47 (19)
N3—Ni1—O189.68 (6)N2—C10—C11112.25 (19)
N4i—Ni1—O190.28 (7)N2—C10—H10A109.2
N4—Ni1—O189.72 (7)C11—C10—H10A109.2
N3i—Ni1—O1i89.68 (6)N2—C10—H10B109.2
N3—Ni1—O1i90.32 (6)C11—C10—H10B109.2
N4i—Ni1—O1i89.72 (7)H10A—C10—H10B107.9
N4—Ni1—O1i90.28 (7)O5—C11—C10112.9 (2)
O1—Ni1—O1i180.000 (1)O5—C11—H11A109.0
C1—O1—Ni1127.60 (13)C10—C11—H11A109.0
C11—O5—H5A109.5O5—C11—H11B109.0
C8—N1—C7129.14 (17)C10—C11—H11B109.0
C8—N1—H1115.4H11A—C11—H11B107.8
C7—N1—H1115.4C12—N3—Ni1107.92 (14)
C9—N2—C10124.2 (2)C12—N3—H3A110.1
C9—N2—H2117.9Ni1—N3—H3A110.1
C10—N2—H2117.9C12—N3—H3B110.1
O2—C1—O1123.6 (2)Ni1—N3—H3B110.1
O2—C1—C2118.0 (2)H3A—N3—H3B108.4
O1—C1—C2118.39 (19)C13—N4—Ni1107.42 (14)
C3—C2—C7118.33 (19)C13—N4—H4A110.2
C3—C2—C1117.89 (19)Ni1—N4—H4A110.2
C7—C2—C1123.78 (19)C13—N4—H4B110.2
C4—C3—C2121.8 (2)Ni1—N4—H4B110.2
C4—C3—H3119.1H4A—N4—H4B108.5
C2—C3—H3119.1N3—C12—C13108.87 (18)
C5—C4—C3119.2 (2)N3—C12—H12A109.9
C5—C4—H4120.4C13—C12—H12A109.9
C3—C4—H4120.4N3—C12—H12B109.9
C4—C5—C6121.0 (2)C13—C12—H12B109.9
C4—C5—H5119.5H12A—C12—H12B108.3
C6—C5—H5119.5N4—C13—C12109.39 (19)
C5—C6—C7120.5 (2)N4—C13—H13A109.8
C5—C6—H6119.8C12—C13—H13A109.8
C7—C6—H6119.8N4—C13—H13B109.8
C6—C7—N1122.06 (19)C12—C13—H13B109.8
C6—C7—C2119.2 (2)H13A—C13—H13B108.2
N3i—Ni1—O1—C1−129.94 (18)C7—N1—C8—O32.7 (4)
N3—Ni1—O1—C150.06 (18)C7—N1—C8—C9−176.75 (18)
N4i—Ni1—O1—C1−46.50 (18)C10—N2—C9—O42.7 (4)
N4—Ni1—O1—C1133.50 (18)C10—N2—C9—C8−177.83 (18)
O1i—Ni1—O1—C146 (100)O3—C8—C9—O4−179.3 (2)
Ni1—O1—C1—O23.4 (3)N1—C8—C9—O40.1 (3)
Ni1—O1—C1—C2−177.07 (13)O3—C8—C9—N21.2 (3)
O2—C1—C2—C30.0 (3)N1—C8—C9—N2−179.35 (18)
O1—C1—C2—C3−179.48 (19)C9—N2—C10—C1186.0 (3)
O2—C1—C2—C7−179.9 (2)N2—C10—C11—O560.6 (3)
O1—C1—C2—C70.5 (3)N3i—Ni1—N3—C12−97 (100)
C7—C2—C3—C4−0.2 (3)N4i—Ni1—N3—C12166.19 (14)
C1—C2—C3—C4179.78 (19)N4—Ni1—N3—C12−13.81 (14)
C2—C3—C4—C5−0.4 (4)O1—Ni1—N3—C1275.94 (14)
C3—C4—C5—C60.6 (4)O1i—Ni1—N3—C12−104.06 (14)
C4—C5—C6—C7−0.1 (4)N3i—Ni1—N4—C13165.48 (14)
C5—C6—C7—N1179.67 (19)N3—Ni1—N4—C13−14.52 (14)
C5—C6—C7—C2−0.6 (3)N4i—Ni1—N4—C133(100)
C8—N1—C7—C6−5.3 (3)O1—Ni1—N4—C13−104.23 (15)
C8—N1—C7—C2174.97 (19)O1i—Ni1—N4—C1375.77 (15)
C3—C2—C7—C60.8 (3)Ni1—N3—C12—C1339.4 (2)
C1—C2—C7—C6−179.26 (19)Ni1—N4—C13—C1240.2 (2)
C3—C2—C7—N1−179.53 (18)N3—C12—C13—N4−54.1 (2)
C1—C2—C7—N10.5 (3)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O3ii0.902.222.976 (2)142.
N4—H4B···O2i0.902.303.001 (3)134.
O5—H5A···O2iii0.821.942.727 (3)160.

Symmetry codes: (ii) x, y−1, z; (i) −x, −y+1, −z+1; (iii) x, y+1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2287).

References

  • Bruker, (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Icbudak, H., Olmez, H., Yesilel, O. Z., Arslan, F., Naumov, P., Jovanovski, G., Ibrahim, A. R., Usman, A., Fun, H. K., Chantrapromma, S. & Ng, S. W. (2003). J. Mol. Struct.657, 255–270.
  • Ojima, H. & Nonoyama, K. (1988). Coord. Chem. Rev.92, 85–92.
  • Ruiz, R., Faus, J., Lloret, F., Julve, M. & Journaurx, Y. (1999). Coord. Chem. Rev.193–195, 1069–1117.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography