PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m964.
Published online 2010 July 17. doi:  10.1107/S1600536810027765
PMCID: PMC3007587

Bis(μ-quinolin-8-olato)-κ3 N,O:O3 O:N,O-bis­[chloridomethyl­phenyl­tin(IV)]

Abstract

The SnIV atom in the centrosymmetric dinculear title compound, [Sn2(CH3)2(C6H5)2(C9H6NO)2Cl2], shows a trans-C2SnNO2Cl distorted octa­hedral coordination [C–Sn–C = 157.83 (8)°]. The quinolin-8-olate anion chelates to the Sn atom; its O atom also binds to the inversion-related Sn atom, forming the dinuclear compound. In the crystal structure, weak inter­molecular C—H(...)Cl hydrogen bonding links the mol­ecules, forming supra­molecular chains running along [100].

Related literature

For related structures, see: Ng et al. (1989 [triangle]); Shi & Hu (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m964-scheme1.jpg

Experimental

Crystal data

  • [Sn2(CH3)2(C6H5)2(C9H6NO)2Cl2]
  • M r = 780.84
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m964-efi1.jpg
  • a = 7.9967 (5) Å
  • b = 17.8081 (10) Å
  • c = 10.1623 (6) Å
  • β = 95.232 (1)°
  • V = 1441.14 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.95 mm−1
  • T = 100 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.592, T max = 0.829
  • 9127 measured reflections
  • 3245 independent reflections
  • 3088 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.047
  • S = 1.09
  • 3245 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027765/xu2799sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027765/xu2799Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The anion of 8-hydroxyquinoline is known to chelate to tin in organotin(IV) quinolinolates; however, for the chloroorganotin quinolinates, the chlorine atom sometimes participates in weak intermolecular bridging. In chloridoodiethyl(quinolin-8-olato)tin, the carbon–tin–carbon angle is opened to 140.9 (3) ° owing to a tin···chlorine contact of 3.690 (2) Å (Shi & Hu, 1987). With the bis(2-carbomethoxyethyl) analog, the tin atom is six-coordinate owing to an intramolecular bond with the oxygen atom of the organo radical (Ng et al., 1989). The chloridomethylphenyltin analog exists as a centrosymmetric dimer in which the quinolin-8-olate anion N,O-chelates to the tin atom (Fig. 1). However, its oxygen atom also binds to the inversion-related tin atom so that bridging by the chlorine atom is precluded for the trans-C2SnNO2Cl octahedral dinuclear molecule. Intermolecular weak C—H···Cl hydrogen bonding links the molecules to form the one dimensional supra-molecular chain in the crystal structure (Table 1).

Experimental

Methylphenyltin dichloride (0.35 g, 1 mmol) and 8-hydroxyquinoline (0.15 g, 1 mmol) were dissolved in methanol (10 ml) to give a faint yellow solution. The solution was set aside for the growth of crystals over a few days. Slow evaporation of methanol furnished crystals.

Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C).

The final difference Fourier map had a peak in the vicinity of Sn1.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of [SnCl(CH3)(C6H5)(C9H6NO)]2 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Sn2(CH3)2(C6H5)2(C9H6NO)2Cl2]F(000) = 768
Mr = 780.84Dx = 1.799 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6739 reflections
a = 7.9967 (5) Åθ = 2.3–28.3°
b = 17.8081 (10) ŵ = 1.95 mm1
c = 10.1623 (6) ÅT = 100 K
β = 95.232 (1)°Block, yellow
V = 1441.14 (15) Å30.30 × 0.20 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer3245 independent reflections
Radiation source: fine-focus sealed tube3088 reflections with I > 2σ(I)
graphiteRint = 0.017
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→6
Tmin = 0.592, Tmax = 0.829k = −23→23
9127 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.021P)2 + 1.1915P] where P = (Fo2 + 2Fc2)/3
3245 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.52 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.569331 (15)0.585876 (6)0.601796 (12)0.01090 (5)
Cl10.70000 (6)0.71504 (2)0.65698 (5)0.01757 (10)
O10.42527 (16)0.48265 (7)0.60854 (13)0.0135 (3)
N10.4714 (2)0.58459 (8)0.80183 (16)0.0121 (3)
C10.8095 (2)0.53633 (10)0.6389 (2)0.0167 (4)
H1A0.79810.48160.64030.025*
H1B0.86180.55360.72450.025*
H1C0.88000.55080.56910.025*
C20.3678 (2)0.64342 (9)0.49452 (19)0.0130 (4)
C30.3885 (3)0.67691 (11)0.3733 (2)0.0169 (4)
H30.49280.67230.33610.020*
C40.2584 (3)0.71696 (11)0.3060 (2)0.0195 (4)
H40.27340.73880.22260.023*
C50.1060 (3)0.72510 (11)0.3607 (2)0.0207 (4)
H50.01760.75330.31560.025*
C60.0837 (3)0.69195 (11)0.4814 (2)0.0206 (4)
H6−0.01980.69750.51940.025*
C70.2136 (2)0.65061 (10)0.5464 (2)0.0164 (4)
H70.19670.62680.62790.020*
C80.3633 (2)0.52614 (10)0.81865 (18)0.0119 (3)
C90.3396 (2)0.47262 (10)0.71380 (18)0.0124 (3)
C100.2317 (2)0.41329 (10)0.7296 (2)0.0147 (4)
H100.21240.37720.66110.018*
C110.1502 (2)0.40557 (10)0.8459 (2)0.0173 (4)
H110.07720.36410.85440.021*
C120.1735 (2)0.45627 (10)0.9470 (2)0.0162 (4)
H120.11770.44971.02480.019*
C130.2812 (2)0.51873 (10)0.93531 (19)0.0133 (4)
C140.3148 (3)0.57403 (11)1.0345 (2)0.0160 (4)
H140.26160.57131.11420.019*
C150.4242 (2)0.63159 (10)1.0154 (2)0.0165 (4)
H150.44710.66881.08160.020*
C160.5016 (2)0.63503 (10)0.89730 (19)0.0146 (4)
H160.57810.67470.88510.018*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.01182 (7)0.01028 (7)0.01071 (8)0.00014 (4)0.00166 (5)0.00028 (4)
Cl10.0161 (2)0.01251 (19)0.0241 (3)−0.00307 (15)0.00144 (18)−0.00177 (16)
O10.0167 (6)0.0120 (6)0.0123 (7)−0.0016 (5)0.0041 (5)−0.0008 (5)
N10.0147 (8)0.0107 (7)0.0110 (8)0.0009 (5)0.0018 (6)0.0001 (5)
C10.0155 (9)0.0161 (8)0.0185 (10)0.0022 (7)0.0006 (7)−0.0006 (7)
C20.0149 (9)0.0093 (7)0.0144 (9)−0.0004 (6)−0.0006 (7)−0.0027 (6)
C30.0181 (9)0.0157 (8)0.0170 (10)0.0016 (7)0.0027 (8)−0.0005 (7)
C40.0269 (11)0.0179 (9)0.0133 (10)0.0027 (8)−0.0012 (8)0.0020 (7)
C50.0206 (10)0.0178 (9)0.0221 (11)0.0035 (7)−0.0064 (8)−0.0015 (8)
C60.0146 (9)0.0228 (10)0.0242 (11)0.0002 (7)0.0009 (8)−0.0043 (8)
C70.0179 (9)0.0182 (9)0.0131 (10)−0.0013 (7)0.0014 (7)−0.0010 (7)
C80.0128 (8)0.0120 (8)0.0107 (9)0.0014 (6)0.0005 (7)0.0015 (6)
C90.0125 (8)0.0125 (8)0.0121 (9)0.0027 (6)0.0007 (7)0.0012 (7)
C100.0154 (9)0.0127 (8)0.0159 (10)−0.0003 (6)0.0006 (7)−0.0013 (7)
C110.0147 (9)0.0143 (8)0.0232 (11)−0.0018 (7)0.0030 (8)0.0026 (7)
C120.0149 (9)0.0178 (9)0.0169 (10)0.0018 (7)0.0057 (7)0.0032 (7)
C130.0135 (9)0.0145 (8)0.0122 (9)0.0030 (6)0.0019 (7)0.0002 (7)
C140.0207 (10)0.0196 (9)0.0084 (9)0.0042 (7)0.0045 (7)−0.0001 (7)
C150.0208 (10)0.0157 (8)0.0128 (10)0.0035 (7)−0.0001 (8)−0.0033 (7)
C160.0155 (9)0.0132 (8)0.0148 (10)0.0007 (7)−0.0003 (7)−0.0010 (7)

Geometric parameters (Å, °)

Sn1—C12.1162 (19)C5—H50.9500
Sn1—C22.1248 (18)C6—C71.390 (3)
Sn1—O12.1739 (13)C6—H60.9500
Sn1—O1i2.4651 (13)C7—H70.9500
Sn1—N12.2442 (16)C8—C131.413 (3)
Sn1—Cl12.5672 (5)C8—C91.429 (2)
O1—C91.334 (2)C9—C101.383 (3)
O1—Sn1i2.4651 (13)C10—C111.408 (3)
N1—C161.328 (2)C10—H100.9500
N1—C81.373 (2)C11—C121.367 (3)
C1—H1A0.9800C11—H110.9500
C1—H1B0.9800C12—C131.419 (3)
C1—H1C0.9800C12—H120.9500
C2—C31.392 (3)C13—C141.417 (3)
C2—C71.391 (3)C14—C151.373 (3)
C3—C41.388 (3)C14—H140.9500
C3—H30.9500C15—C161.401 (3)
C4—C51.393 (3)C15—H150.9500
C4—H40.9500C16—H160.9500
C5—C61.387 (3)
C1—Sn1—C2157.83 (8)C6—C5—C4119.75 (19)
C1—Sn1—O196.71 (6)C6—C5—H5120.1
C2—Sn1—O192.56 (6)C4—C5—H5120.1
C1—Sn1—N1102.73 (7)C5—C6—C7119.69 (19)
C2—Sn1—N199.13 (7)C5—C6—H6120.2
O1—Sn1—N174.52 (5)C7—C6—H6120.2
C1—Sn1—O1i81.99 (6)C2—C7—C6121.21 (19)
C2—Sn1—O1i82.31 (6)C2—C7—H7119.4
O1—Sn1—O1i70.12 (5)C6—C7—H7119.4
N1—Sn1—O1i144.64 (5)N1—C8—C13121.40 (16)
C1—Sn1—Cl189.42 (5)N1—C8—C9117.06 (16)
C2—Sn1—Cl187.39 (5)C13—C8—C9121.54 (16)
O1—Sn1—Cl1163.16 (4)O1—C9—C10124.56 (17)
N1—Sn1—Cl188.85 (4)O1—C9—C8117.74 (16)
O1i—Sn1—Cl1126.44 (3)C10—C9—C8117.69 (17)
C9—O1—Sn1116.80 (11)C9—C10—C11120.93 (18)
C9—O1—Sn1i132.84 (11)C9—C10—H10119.5
Sn1—O1—Sn1i109.88 (5)C11—C10—H10119.5
C16—N1—C8119.75 (17)C12—C11—C10121.63 (18)
C16—N1—Sn1126.85 (13)C12—C11—H11119.2
C8—N1—Sn1113.33 (12)C10—C11—H11119.2
Sn1—C1—H1A109.5C11—C12—C13119.79 (18)
Sn1—C1—H1B109.5C11—C12—H12120.1
H1A—C1—H1B109.5C13—C12—H12120.1
Sn1—C1—H1C109.5C14—C13—C8117.37 (17)
H1A—C1—H1C109.5C14—C13—C12124.21 (18)
H1B—C1—H1C109.5C8—C13—C12118.41 (17)
C3—C2—C7118.50 (18)C15—C14—C13119.99 (18)
C3—C2—Sn1121.01 (14)C15—C14—H14120.0
C7—C2—Sn1120.46 (14)C13—C14—H14120.0
C2—C3—C4120.78 (19)C14—C15—C16119.41 (18)
C2—C3—H3119.6C14—C15—H15120.3
C4—C3—H3119.6C16—C15—H15120.3
C5—C4—C3120.03 (19)N1—C16—C15122.08 (17)
C5—C4—H4120.0N1—C16—H16119.0
C3—C4—H4120.0C15—C16—H16119.0
C1—Sn1—O1—C9107.94 (13)C3—C4—C5—C6−1.1 (3)
C2—Sn1—O1—C9−92.24 (13)C4—C5—C6—C7−0.2 (3)
N1—Sn1—O1—C96.53 (12)C3—C2—C7—C6−1.8 (3)
O1i—Sn1—O1—C9−173.12 (15)Sn1—C2—C7—C6176.04 (14)
Cl1—Sn1—O1—C9−2.8 (2)C5—C6—C7—C21.7 (3)
C1—Sn1—O1—Sn1i−78.95 (7)C16—N1—C8—C130.7 (3)
C2—Sn1—O1—Sn1i80.88 (7)Sn1—N1—C8—C13−176.16 (13)
N1—Sn1—O1—Sn1i179.65 (7)C16—N1—C8—C9−178.36 (16)
O1i—Sn1—O1—Sn1i0.0Sn1—N1—C8—C94.7 (2)
Cl1—Sn1—O1—Sn1i170.35 (8)Sn1—O1—C9—C10174.90 (14)
C1—Sn1—N1—C1683.99 (16)Sn1i—O1—C9—C103.7 (3)
C2—Sn1—N1—C16−92.33 (16)Sn1—O1—C9—C8−6.4 (2)
O1—Sn1—N1—C16177.53 (16)Sn1i—O1—C9—C8−177.52 (11)
O1i—Sn1—N1—C16178.10 (13)N1—C8—C9—O10.9 (2)
Cl1—Sn1—N1—C16−5.16 (15)C13—C8—C9—O1−178.23 (16)
C1—Sn1—N1—C8−99.37 (13)N1—C8—C9—C10179.70 (16)
C2—Sn1—N1—C884.31 (13)C13—C8—C9—C100.6 (3)
O1—Sn1—N1—C8−5.84 (12)O1—C9—C10—C11177.91 (17)
O1i—Sn1—N1—C8−5.27 (17)C8—C9—C10—C11−0.8 (3)
Cl1—Sn1—N1—C8171.48 (12)C9—C10—C11—C120.3 (3)
C1—Sn1—C2—C3−8.7 (3)C10—C11—C12—C130.4 (3)
O1—Sn1—C2—C3−123.54 (15)N1—C8—C13—C140.0 (3)
N1—Sn1—C2—C3161.73 (14)C9—C8—C13—C14179.06 (17)
O1i—Sn1—C2—C3−53.99 (15)N1—C8—C13—C12−178.93 (16)
Cl1—Sn1—C2—C373.32 (14)C9—C8—C13—C120.1 (3)
C1—Sn1—C2—C7173.51 (16)C11—C12—C13—C14−179.50 (19)
O1—Sn1—C2—C758.69 (15)C11—C12—C13—C8−0.6 (3)
N1—Sn1—C2—C7−16.04 (15)C8—C13—C14—C15−0.4 (3)
O1i—Sn1—C2—C7128.23 (15)C12—C13—C14—C15178.46 (18)
Cl1—Sn1—C2—C7−104.46 (14)C13—C14—C15—C160.1 (3)
C7—C2—C3—C40.4 (3)C8—N1—C16—C15−1.1 (3)
Sn1—C2—C3—C4−177.45 (14)Sn1—N1—C16—C15175.35 (13)
C2—C3—C4—C51.1 (3)C14—C15—C16—N10.7 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···Cl1ii0.952.763.710 (2)174

Symmetry codes: (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2799).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ng, S. W., Chen, W., Charland, J.-P. & Smith, F. E. (1989). J. Organomet. Chem.364, 343–351.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, D.-H. & Hu, S.-Z. (1987). Chin. J. Struct. Chem.6, 193–197.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography