PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m1034–m1035.
Published online 2010 July 31. doi:  10.1107/S1600536810029843
PMCID: PMC3007586

catena-poly[[[(2,2′-bipyridine-2κ2 N,N′)-μ-cyanido-1:2κ2 N:C-cyanido-2κC-tris­(methanol-1κO)(nitrato-1κ2 O,O′)iron(II)yttrium(III)]-di-μ-cyanido-1:2′κ2 N:C;2:1′κ2 C:N] methanol solvate hemihydrate]

Abstract

The title complex, {[FeIIYIII(CN)4(NO3)(C10H8N2)(CH3OH)3]·CH3OH·0.5H2O}n, is built up of ladder-like chains oriented along the c axis. Each ladder consists of two strands based on alternating FeII and YIII ions connected by cyanide bridges. Two such parallel chains are connected by additional cyanide anions (the ‘rungs’ of the ladder), which likewise connect FeII and YIII ions, such that each [Fe(bipy)(CN)4]2− (bipy is 2,2′-bipyridine) unit coordinates with three YIII ions and each YIII ion connects with three different [Fe(bipy)(CN)4]2− units. The FeII atom is six-coordinated in a distorted octa­hedral geometry and the YIII atom cation is eight-coordinated in a distorted dodeca­hedral environment. The uncoordinated methanol solvent mol­ecules are involved in hydrogen-bonding inter­actions with the one terminal cyanide group and a coordinated methanol mol­ecule from another [YIII(NO3)(CH3OH)3]2+ unit. Adjacent ladder-like chains are also held together by hydrogen bonds between the terminal cyanide ligands of the [Fe(CN)4(bipy)]2− units in one chain and the OH donors of CH3OH ligands from [YIII(NO3)(CH3OH)3] units in neighboring chains. The water molecule exhibits half-occupation.

Related literature

For background to the design, synthesis and properties of mixed rare earth–transition metal complexes, see: Wilson et al. (2009 [triangle]); Zhou et al. (2002 [triangle]); Li et al. (2008 [triangle]); Karan et al. (2002 [triangle]); Sokol et al. (2002 [triangle]); Toma et al. (2003 [triangle]); Xu et al. (2009 [triangle]). For related structures, see: Baca et al. (2007 [triangle]); Liu et al. (2008 [triangle]); Yuan et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1034-scheme1.jpg

Experimental

Crystal data

  • [FeY(CN)4(NO3)(C10H8N2)(CH4O)3]·CH4O·0.5H2O
  • M r = 604.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1034-efi1.jpg
  • a = 12.803 (3) Å
  • b = 18.132 (4) Å
  • c = 10.728 (2) Å
  • β = 103.439 (3)°
  • V = 2422.2 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.04 mm−1
  • T = 173 K
  • 0.26 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.46, T max = 0.55
  • 18891 measured reflections
  • 4760 independent reflections
  • 3490 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.107
  • S = 1.07
  • 4760 reflections
  • 316 parameters
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810029843/nc2192sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029843/nc2192Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Jiangsu Province (No. BK2009196) for financial support.

supplementary crystallographic information

Comment

Much attention is currently devoted to the design and synthesis of mixed rare earth–transition metal complexes because rare earth ions have a rich coordination chemistry with high coordination numbers and significant coordination flexibility, which often leads to unanticipated but remarkable structures (Karan et al., 2002; Li et al., 2008; Wilson et al., 2009; Zhou et al., 2002.) [M(CN)x(L)y]n- [M = Cr, Fe, Ru and Mo; L = chelate ligand; and x = 2, 3, 4) can be used as the bricks to synthesize low-dimensional cyanide-bridged bimetallic compounds, which is a elaborate strategy as revealed by a few research groups (Sokol et al., 2002; Toma et al., 2003). However, the assemblies of [M(CN)x(L)y]n- with rare earth ions have rarely been reported so far (Xu et al., 2009). In this paper, we report a new cyano-bridged FeIIYIII bimetallic ladder-like chain complex, based on the [FeII(bipy)(CN)4]2- [bipy = 2,2'-bipyridine] building block.

The asymmetric unit in the structure of the title complex comprises one [FeII(bipy)(CN)4]2- anion, one [YIII(NO3)(CH3OH)3]2+ cation, one solvent methanol molecule and half a water molecule (Fig. 1). The crystal structure consists of one-dimensional ladder-like bimetallic chains, {[FeII(bipy)(CN)4][YIII(NO3)(CH3OH)3]}n, built up from alternating FeII and YIII metal centers linked through the cyano bridges (Fig. 2). The ladder-like bimetallic chains contain Fe2Y2 centrosymmetric motifs. The [Fe(bipy)(CN)4]2- fragment exhibits a distorted octahedral structure consisting of two N atoms from a planar bipy ligand and four C atoms from four CN- groups. The small bite angle subtended by the chelating bipy group [79.90 (15)° for N1—Fe1—N2] is one of the main factors accounting for this distortion. Three of the four cyano groups of the [Fe(bipy)(CN)4]2- unit are bridging, while the fourth is terminal. The Fe—C—N angles for both terminal [178.6 (5)°] and bridging [178.7 (4), 179.4 (4) and 174.4 (4)°] CN- groups deviate slightly from strict linearity. Each YIII cation is eight-coordinated, connecting with two O atoms from the NO3 group, three O atoms from three CH3OH units and three N atoms from three CN- ligands, building distorted YN3O5 dodecahedral surroundings (Fig. 1). The Y—O bond lengths fall in a very narrow range [2.385 (3)–2.448 (3)Å for Y—O(NO3) and 2.372 (3)–2.392 (3)(3) Å for Y—O(CH3OH)]. The Y—N(cyanide) bond distances [2.401 (4)–2.344 (4) Å] are somewhat smaller than those from {[Ru(phen)(CN)4]3[Ln(terpy)(H2O)3]2.nH2O} [2.530 (9)–2.548 (11) Å; Baca et al., 2007]. The angles of YIIINC(cyano) are far from linear [165.9 (3)–169.9 (3)°]. The NO3- ion acts as a bidentate ligand toward YIII through two of its three O atoms, which is different from previously reported cases (Yuan et al., 2004; Liu et al., 2008), in which an NO3- ion coordinated to a rare earth ion acts as a monodenate ligand in rare earth–transition metal complexes.

The Fe···Y separations across cyanide bridges are 5.410 (4), 5.357 (3) and 5.424 (4) Å. The uncoordinated methanol solvent molecules are involved in hydrogen-bonding interactions with the one terminal cyanide group and a coordinated methanol molecule from another [YIII(NO3)(CH3OH)3]2- unit (Table 1). Adjacent ladder-like chains are also held together by hydrogen bonds between the terminal cyanide ligands of the [Fe(CN)4(bipy)]2- units in one chain and the OH donors of CH3OH ligands from [YIII(NO3)(CH3OH)3] units in neighboring chains. From this arrangement a two-dimensional structure is formed.

Experimental

Red brown prism crystals of the title complex were obtained by slow diffusion of a MeOH solution of K2[Fe(bipy)(CN)4].3H2O(0.1 mmol) and an aqueous solution of Y(NO3)3.6H2O (0.1 mmol) through an H-tube at room temperature. The resulting crystals were collected, washed with H2O and MeOH, respectively, and dried in air.

Refinement

The (C)H atoms of the bipy ligand were placed in calculated positions (C - H = 0.95 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The (C)H atoms of the methanol molecule were placed geometrically (C - H = 0.98 or 0.96 Å) and refined as riding, with Uiso(H) = 1.5Ueq(C). The (O)H atoms of the methanol molecule were located in a difference Fourier map and refined with O - H restraints (O - H = 0.99 or 0.85 Å), and with Uiso(H) = 1.5Ueq(O). The position of the water molecule is occupied to only 50%. Its H atoms were located in a difference Fourier map and refined with O - H restraints (O - H = 0.85 Å), and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title complex, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x, -y, z - 1; (iii) x, y, z + 1.]
Fig. 2.
The one-dimensional chain of the title complex. [Symmetry code: (i) -x + 1, -y, -z + 1.]

Crystal data

[FeY(CN)4(NO3)(C10H8N2)(CH4O)3]·CH4O·0.5H2OF(000) = 1228
Mr = 604.21Dx = 1.657 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 838 reflections
a = 12.803 (3) Åθ = 3.0–23.5°
b = 18.132 (4) ŵ = 3.04 mm1
c = 10.728 (2) ÅT = 173 K
β = 103.439 (3)°Prism, red brown
V = 2422.2 (9) Å30.26 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer4760 independent reflections
Radiation source: sealed tube3490 reflections with I > 2σ(I)
graphiteRint = 0.067
phi and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −14→15
Tmin = 0.46, Tmax = 0.55k = −22→22
18891 measured reflectionsl = −13→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0481P)2] where P = (Fo2 + 2Fc2)/3
4760 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = −0.57 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.7345 (4)−0.1231 (2)0.3081 (4)0.0385 (10)
H10.6595−0.12590.30290.046*
C20.7916 (4)−0.1886 (2)0.3052 (4)0.0347 (10)
H20.7570−0.23530.29750.042*
C30.9033 (4)−0.1825 (3)0.3155 (4)0.0394 (10)
H30.9455−0.22580.31740.047*
C40.9530 (4)−0.1133 (3)0.3213 (4)0.0419 (11)
H41.0277−0.10890.32570.050*
C50.8893 (3)−0.0504 (3)0.3225 (5)0.0391 (10)
C60.9318 (3)0.0236 (3)0.3317 (4)0.0384 (10)
C71.0374 (4)0.0395 (3)0.3333 (5)0.0452 (11)
H71.08580.00140.32380.054*
C81.0714 (3)0.1123 (2)0.3497 (4)0.0348 (10)
H81.14390.12410.35040.042*
C91.0006 (3)0.1689 (3)0.3651 (4)0.0354 (10)
H91.02400.21850.37900.042*
C100.8930 (3)0.1483 (2)0.3587 (4)0.0281 (8)
H100.84230.18530.36630.034*
C110.7170 (3)0.0426 (2)0.4978 (4)0.0363 (10)
C120.5697 (3)0.0028 (2)0.2858 (4)0.0363 (10)
C130.6951 (3)0.0482 (2)0.1340 (4)0.0298 (9)
C140.6443 (3)0.1349 (3)0.3103 (4)0.0385 (10)
C150.8118 (4)−0.0835 (3)0.9317 (4)0.0427 (11)
H15A0.8576−0.04700.98590.064*
H15B0.8564−0.11630.89330.064*
H15C0.7734−0.11240.98400.064*
C160.7459 (4)0.2236 (3)0.6177 (4)0.0390 (10)
H16A0.81810.21520.67120.059*
H16B0.73190.27670.60940.059*
H16C0.74080.20220.53260.059*
C170.4893 (4)0.1450 (3)0.9517 (5)0.0429 (11)
H17A0.49070.09160.96600.064*
H17B0.41550.16080.91390.064*
H17C0.51580.17041.03360.064*
C180.4471 (3)0.1056 (3)0.4540 (4)0.0385 (10)
H18A0.41350.13430.50890.058*
H18B0.43070.05440.46170.058*
H18C0.52350.11250.47850.058*
Fe10.70769 (5)0.04235 (3)0.31568 (6)0.03166 (16)
N10.7825 (3)−0.05414 (19)0.3170 (4)0.0338 (8)
N20.8605 (3)0.07728 (19)0.3405 (3)0.0307 (7)
N30.7168 (3)0.0475 (2)0.6043 (4)0.0364 (8)
N40.4832 (3)−0.0227 (2)0.2667 (4)0.0394 (9)
N50.6896 (3)0.05129 (18)0.0266 (4)0.0339 (8)
N60.6040 (3)0.1931 (2)0.3041 (4)0.0385 (9)
N70.8853 (3)0.1436 (2)0.9291 (3)0.0354 (8)
O10.8747 (2)0.08407 (17)0.8686 (3)0.0398 (7)
O20.7993 (2)0.17623 (15)0.9284 (3)0.0367 (7)
O30.9709 (2)0.16875 (16)0.9851 (3)0.0399 (7)
O40.7341 (2)−0.04552 (16)0.8312 (3)0.0361 (7)
H4A0.6659−0.07240.82530.054*
O50.6676 (2)0.18859 (16)0.6775 (3)0.0379 (7)
H5A0.64520.22800.72970.057*
O60.5579 (2)0.16346 (17)0.8642 (3)0.0354 (7)
H6A0.59930.20770.90020.053*
O70.4061 (2)0.12975 (17)0.3204 (3)0.0408 (7)
H7B0.45820.14510.29070.061*
O80.3088 (5)0.2478 (4)0.4772 (7)0.0489 (17)0.50
H8B0.24470.23220.46700.073*0.50
H8C0.33180.26220.55400.073*0.50
Y10.68339 (3)0.08045 (2)0.80828 (4)0.03110 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.040 (2)0.028 (2)0.045 (3)−0.0085 (19)0.005 (2)0.0008 (19)
C20.044 (2)0.033 (2)0.028 (2)−0.0147 (19)0.0103 (18)−0.0087 (17)
C30.039 (2)0.037 (2)0.042 (3)−0.0070 (19)0.0076 (19)−0.003 (2)
C40.051 (3)0.035 (2)0.043 (3)−0.009 (2)0.017 (2)−0.002 (2)
C50.030 (2)0.043 (3)0.046 (3)0.0014 (19)0.0119 (19)0.001 (2)
C60.029 (2)0.048 (3)0.039 (3)−0.0038 (19)0.0103 (18)−0.003 (2)
C70.041 (3)0.050 (3)0.044 (3)−0.003 (2)0.008 (2)0.002 (2)
C80.036 (2)0.038 (2)0.036 (2)−0.0024 (18)0.0191 (18)0.0030 (19)
C90.036 (2)0.043 (3)0.029 (2)0.0085 (19)0.0124 (17)−0.0080 (19)
C100.034 (2)0.027 (2)0.0260 (19)0.0081 (16)0.0131 (16)0.0043 (16)
C110.036 (2)0.033 (2)0.038 (3)−0.0010 (19)0.0049 (19)0.001 (2)
C120.028 (2)0.031 (2)0.045 (3)−0.0038 (18)−0.0014 (19)−0.0016 (19)
C130.027 (2)0.029 (2)0.032 (2)−0.0095 (16)0.0043 (17)0.0037 (17)
C140.033 (2)0.042 (3)0.046 (3)0.0122 (19)0.0193 (19)−0.002 (2)
C150.034 (2)0.044 (3)0.040 (3)−0.013 (2)−0.0127 (19)−0.001 (2)
C160.037 (2)0.041 (3)0.042 (3)0.003 (2)0.015 (2)−0.010 (2)
C170.041 (3)0.038 (3)0.054 (3)0.011 (2)0.018 (2)0.019 (2)
C180.034 (2)0.037 (2)0.044 (3)−0.0078 (18)0.009 (2)0.008 (2)
Fe10.0315 (3)0.0311 (3)0.0327 (3)−0.0019 (2)0.0080 (2)−0.0011 (2)
N10.0317 (19)0.0258 (18)0.045 (2)−0.0048 (14)0.0115 (16)−0.0053 (15)
N20.0281 (17)0.0279 (18)0.0366 (19)−0.0061 (14)0.0088 (14)0.0024 (15)
N30.0317 (19)0.041 (2)0.040 (2)−0.0017 (15)0.0149 (16)0.0024 (17)
N40.037 (2)0.035 (2)0.045 (2)0.0037 (16)0.0059 (17)−0.0022 (17)
N50.0308 (19)0.0293 (19)0.043 (2)−0.0113 (15)0.0113 (16)0.0014 (16)
N60.036 (2)0.034 (2)0.047 (2)0.0065 (16)0.0133 (17)−0.0072 (17)
N70.0316 (19)0.044 (2)0.0310 (19)0.0007 (16)0.0075 (15)−0.0157 (17)
O10.0346 (16)0.0331 (17)0.0493 (19)0.0044 (13)0.0050 (14)−0.0012 (14)
O20.0293 (16)0.0297 (16)0.0476 (19)−0.0013 (13)0.0014 (13)0.0034 (13)
O30.0343 (17)0.0299 (16)0.0509 (19)−0.0084 (13)0.0004 (14)0.0013 (14)
O40.0432 (17)0.0295 (15)0.0309 (16)−0.0158 (13)−0.0010 (13)−0.0060 (12)
O50.0487 (18)0.0341 (17)0.0327 (16)−0.0156 (14)0.0128 (13)−0.0033 (13)
O60.0306 (16)0.0370 (17)0.0412 (17)−0.0026 (12)0.0137 (13)0.0023 (13)
O70.0412 (18)0.0439 (19)0.0346 (17)−0.0068 (14)0.0034 (13)0.0051 (14)
O80.041 (4)0.045 (4)0.058 (4)0.012 (3)0.006 (3)−0.001 (3)
Y10.0295 (2)0.0324 (2)0.0303 (2)−0.00059 (17)0.00460 (15)0.00014 (17)

Geometric parameters (Å, °)

C1—N11.386 (5)C16—H16A0.9799
C1—C21.399 (6)C16—H16B0.9800
C1—H10.9500C16—H16C0.9800
C2—C31.413 (6)C17—O61.465 (5)
C2—H20.9500C17—H17A0.9799
C3—C41.402 (6)C17—H17B0.9800
C3—H30.9500C17—H17C0.9799
C4—C51.404 (6)C18—O71.474 (5)
C4—H40.9502C18—H18A0.9599
C5—N11.356 (6)C18—H18B0.9600
C5—C61.442 (6)C18—H18C0.9600
C6—N21.353 (6)Fe1—N11.993 (4)
C6—C71.379 (6)Fe1—N22.015 (3)
C7—C81.387 (7)N3—Y12.401 (4)
C7—H70.9500N4—Y1i2.344 (4)
C8—C91.405 (6)N5—Y1ii2.384 (4)
C8—H80.9500N7—O31.210 (4)
C9—C101.413 (6)N7—O21.248 (4)
C9—H90.9500N7—O11.251 (4)
C10—N21.353 (5)N7—Y12.849 (4)
C10—H100.9500O1—Y12.384 (3)
C11—N31.146 (6)O2—Y12.448 (3)
C11—Fe11.930 (5)O4—Y12.372 (3)
C12—N41.173 (5)O4—H4A0.9900
C12—Fe11.865 (4)O5—Y12.392 (3)
C13—N51.140 (5)O5—H5A0.9900
C13—Fe11.921 (4)O6—Y12.378 (3)
C14—N61.169 (5)O6—H6A0.9901
C14—Fe11.860 (4)O7—H7B0.8501
C15—O41.459 (5)O8—H8B0.8499
C15—H15A0.9801O8—H8C0.8500
C15—H15B0.9800Y1—N4i2.344 (4)
C15—H15C0.9800Y1—N5iii2.384 (4)
C16—O51.455 (5)
N1—C1—C2122.8 (4)C12—Fe1—N2175.02 (17)
N1—C1—H1118.7C13—Fe1—N288.11 (15)
C2—C1—H1118.5C11—Fe1—N292.05 (16)
C1—C2—C3117.2 (4)N1—Fe1—N279.90 (14)
C1—C2—H2121.6C5—N1—C1118.3 (4)
C3—C2—H2121.2C5—N1—Fe1115.7 (3)
C4—C3—C2120.9 (4)C1—N1—Fe1125.9 (3)
C4—C3—H3119.3C6—N2—C10120.4 (3)
C2—C3—H3119.9C6—N2—Fe1114.5 (3)
C3—C4—C5118.0 (4)C10—N2—Fe1125.1 (3)
C3—C4—H4121.3C11—N3—Y1165.9 (4)
C5—C4—H4120.7C12—N4—Y1i169.3 (4)
N1—C5—C4122.7 (4)C13—N5—Y1ii169.9 (3)
N1—C5—C6114.2 (4)O3—N7—O2121.4 (4)
C4—C5—C6123.1 (4)O3—N7—O1124.0 (4)
N2—C6—C7121.6 (4)O2—N7—O1114.6 (3)
N2—C6—C5115.1 (4)O3—N7—Y1177.2 (3)
C7—C6—C5123.3 (4)O2—N7—Y158.8 (2)
C6—C7—C8118.6 (5)O1—N7—Y155.87 (19)
C6—C7—H7120.5N7—O1—Y198.4 (2)
C8—C7—H7120.9N7—O2—Y195.3 (2)
C7—C8—C9121.1 (4)C15—O4—Y1130.8 (2)
C7—C8—H8119.5C15—O4—H4A104.8
C9—C8—H8119.3Y1—O4—H4A104.6
C8—C9—C10116.8 (4)C16—O5—Y1130.0 (3)
C8—C9—H9121.5C16—O5—H5A104.7
C10—C9—H9121.7Y1—O5—H5A104.8
N2—C10—C9121.4 (4)C17—O6—Y1123.9 (2)
N2—C10—H10119.5C17—O6—H6A106.4
C9—C10—H10119.1Y1—O6—H6A106.2
N3—C11—Fe1174.3 (4)C18—O7—H7B109.2
N4—C12—Fe1179.4 (4)H8B—O8—H8C109.5
N5—C13—Fe1178.7 (4)N4i—Y1—O479.10 (11)
N6—C14—Fe1178.6 (4)N4i—Y1—O675.80 (12)
O4—C15—H15A109.3O4—Y1—O6140.19 (10)
O4—C15—H15B109.9N4i—Y1—N5iii93.33 (12)
H15A—C15—H15B109.5O4—Y1—N5iii74.86 (11)
O4—C15—H15C109.2O6—Y1—N5iii76.29 (11)
H15A—C15—H15C109.5N4i—Y1—O1154.27 (12)
H15B—C15—H15C109.5O4—Y1—O176.06 (10)
O5—C16—H16A109.1O6—Y1—O1128.74 (11)
O5—C16—H16B109.8N5iii—Y1—O186.64 (12)
H16A—C16—H16B109.5N4i—Y1—O5102.62 (12)
O5—C16—H16C109.5O4—Y1—O5146.51 (11)
H16A—C16—H16C109.5O6—Y1—O570.07 (10)
H16B—C16—H16C109.5N5iii—Y1—O5137.47 (11)
O6—C17—H17A109.6O1—Y1—O594.49 (11)
O6—C17—H17B109.4N4i—Y1—N385.22 (13)
H17A—C17—H17B109.5O4—Y1—N375.66 (12)
O6—C17—H17C109.4O6—Y1—N3131.40 (11)
H17A—C17—H17C109.5N5iii—Y1—N3150.21 (13)
H17B—C17—H17C109.5O1—Y1—N382.26 (12)
O7—C18—H18A109.0O5—Y1—N371.22 (12)
O7—C18—H18B109.6N4i—Y1—O2152.81 (12)
H18A—C18—H18B109.5O4—Y1—O2120.72 (10)
O7—C18—H18C109.8O6—Y1—O277.33 (10)
H18A—C18—H18C109.5N5iii—Y1—O276.24 (11)
H18B—C18—H18C109.5O1—Y1—O251.58 (10)
C14—Fe1—C1287.3 (2)O5—Y1—O271.68 (10)
C14—Fe1—C1389.19 (19)N3—Y1—O2116.23 (11)
C12—Fe1—C1389.64 (18)N4i—Y1—N7173.07 (12)
C14—Fe1—C1187.33 (19)O4—Y1—N798.20 (10)
C12—Fe1—C1190.5 (2)O6—Y1—N7103.03 (10)
C13—Fe1—C11176.51 (19)N5iii—Y1—N779.78 (11)
C14—Fe1—N1176.55 (18)O1—Y1—N725.75 (10)
C12—Fe1—N195.62 (17)O5—Y1—N783.18 (11)
C13—Fe1—N188.99 (17)N3—Y1—N7100.36 (11)
C11—Fe1—N194.48 (17)O2—Y1—N725.85 (9)
C14—Fe1—N297.11 (18)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z−1; (iii) x, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···N6iv0.991.782.762 (5)172
O7—H7B···N60.852.032.823 (5)154

Symmetry codes: (iv) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2192).

References

  • Baca, S. G., Adams, H., Sykes, D., Faulkner, S. & Ward, M. D. (2007). Dalton Trans. pp. 2419–2430. [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2002). SADABS Bruker AXS Inc., Madison,Wisconsin, USA.
  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Karan, N. K., Mitra, S., Hossain, G. M. G. & Malik, K. M. A. (2002). Z. Naturforsch. Teil B, 57, 736–740.
  • Li, J. R., Chen, W. T., Tong, M. L., Guo, G. C., Tao, Y., Yu, Q., Song, W. C. & Bu, X. H. (2008). Cryst. Growth Des.8, 2780–2792.
  • Liu, M., Yuan, W. B., Zhang, Q., Yan, L. & Yang, R. D. (2008). Chin. J. Appl. Chem.25, 1194–1196.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sokol, J. J., Shores, M. P. & Long, J. R. (2002). Inorg. Chem.41, 3052–3054. [PubMed]
  • Toma, L. M., Lescouezec, R., Lloret, F., Julve, M., Vaissermann, J. & Verdaguer, M. (2003). Chem. Commun. pp. 1850–1855. [PubMed]
  • Wilson, D. C., Liu, S. M., Chen, X. N., Meyers, E. A., Bao, X. G., Prosvirin, A. V., Dunbar, K. R., Hadad, C. M. & Shore, S. G. (2009). Inorg. Chem.48, 5725–5735. [PubMed]
  • Xu, Y., Zhou, H., Yuan, A.-H., Shen, X.-P. & Zhang, Q. (2009). Acta Cryst. C65, m177–m179. [PubMed]
  • Yuan, W. B., Yan, L. & Yang, R. D. (2004). Chin. J. Appl. Chem.20, 829–831.
  • Zhou, B. C., Kou, H.-Z., He, Y., Xiong, M., Wang, R.-J. & Li, Y.-D. (2002). Acta Cryst. C58, m478–m480. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography