PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m997.
Published online 2010 July 24. doi:  10.1107/S1600536810028710
PMCID: PMC3007584

Dicyanidobis(thio­urea-κS)cadmium(II) monohydrate

Abstract

In the title compound, [Cd(CN)2(CH4N2S)2]·H2O, the Cd atom lies on a twofold rotation axis and is bonded to two S atoms of thio­urea and two C atoms of the cyanide anions in a distorted tetra­hedral environment. The crystal structure is stabilized by N—H(...)N(CN), N—H(...)O, O—H(...)N and N—H(...)S hydrogen bonds.

Related literature

For background to cadmium(II) complexes of thio­urea-type ligands, see: Corao & Baggio (1969 [triangle]); Malik et al. (2010 [triangle]); Marcos et al. (1998 [triangle]); Nawaz et al. (2010a [triangle],b [triangle]); Wang et al. (2002 [triangle]). For the non-linear optical properties and semi-conducting applications of Cd–thio­urea complexes, see: Rajesh et al. (2004 [triangle]); Stoev & Ruseva (1994 [triangle]). For the structures of cyanido complexes of d 10 metal ions, see: Ahmad et al. (2009 [triangle]); Hanif et al. (2007 [triangle]); Yoshikawa et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m997-scheme1.jpg

Experimental

Crystal data

  • [Cd(CN)2(CH4N2S)2]·H2O
  • M r = 334.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m997-efi1.jpg
  • a = 10.5955 (6) Å
  • b = 4.0782 (3) Å
  • c = 13.4127 (8) Å
  • β = 98.738 (1)°
  • V = 572.84 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.25 mm−1
  • T = 294 K
  • 0.29 × 0.28 × 0.24 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.561, T max = 0.614
  • 7211 measured reflections
  • 1430 independent reflections
  • 1376 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.043
  • S = 1.10
  • 1430 reflections
  • 86 parameters
  • All H-atom parameters refined
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.74 e Å−3

Data collection: SMART (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810028710/zl2290sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028710/zl2290Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia for providing access to the X-ray facility.

supplementary crystallographic information

Comment

The interest in cadmium(II) complexes of thiourea (Tu) arises because some of them exhibit non-linear optical properties (Rajesh et al., 2004) and they are useful for the convenient preparation of cadmium sulfide based semiconducting materials by their thermal decomposition in air (Stoev et al., 1994). Several crystallographic reports about cadmium(II) complexes of thiourea reveal that it coordinates to cadmium(II) via the sulfur atom (Corao et al., 1969; Marcos et al., 1998; Wang et al., 2002). Recently, we have reported the crystal structures of cadmium(II) complexes of N,N'-dimethylthiourea (Dmtu), [Cd(Dmtu)2Cl2] (Malik et al., 2010) and tetramethylthiourea (Tmtu), [Cd(Tmtu)2Br2] (Nawaz et al., 2010a) and [Cd(Tmtu)2I2] (Nawaz et al., 2010b). Herein, we report the crystal structure of a cadmium cyanide complex of thiourea, biscyanidobis(thiourea-kS)cadmium(II) monohydrate, [Cd(Tu)2(CN)2].H2O. The present investigation was carried out in view of our continuous interest in the structural chemistry of cyanido complexes of d10 metal ions with thiourea type ligands (Ahmad et al., 2009; Hanif et al., 2007).

In the title compound, the Cd atom is situated on a twofold axis of symmetry and is bonded to two cyanide carbon atoms and two sulfur atoms of thiourea (Figure 1). The four coordinate metal ion adopts a severely distorted tetrahedral geometry, the bond angles being in the range of 95.76 (4) - 143.5 (1) °. The Cd—S and Cd—C bond lengths are 2.6363 (5) Å and 2.211 (2) Å respectively. These are in agreement with those reported for related compounds (Marcos et al., 1998; Malik et al. 2010; Nawaz et al., 2010a,b; Wang et al., 2002; Yoshikawa et al., 2003). The two C—N bond lengths in thiourea, C2—N2 and C2—N3, are 1.312 (2) Å and 1.305 (2) Å respectively. The CNH2 fragments of the two thiourea molecules are essentially planar, the maximum deviation from the mean plane being for the nitrogen atoms with 0.03 (1) Å. These values are consistent with a significant CN double bond character and electron delocalization in the SCN2 moiety. To the best of our knowledge, this is the first X-ray structure of a cadmium complex having both sulfur containing ligands and cyanide in its coordination sphere.

The molecules pack to form columns parallel to the b direction (Figure 2). Within these columns, each metal ion interacts with two sulfur atoms of a neighboring molecule (Cd···S: 3.3140 (5) Å), hence extending the tetra-coordinate inner-sphere to a hexa-coordinate outer-sphere with a distorted octahedral environment. These interactions confer to the molecular columns a polymeric chain character.

Intermolecular hydrogen bonding takes place through N—H···S as well as N—H···N(CN) interactions (Table 1). The complex molecules also interact with the water molecules through C—N···H—O and N—H···O bonds. In this scheme the water molecule is tetrahedrally hydrogen bonded to four complex molecules. This generates a three-dimensional hydrogen bonding network where the molecular chains are interconnected through hydrogen bonding either directly or through the water molecules.

Experimental

To 0.17 g (1.0 mmol) cadmium(II) cyanide (prepared by the reaction of CdCl2.H2O and KCN in 1:2 molar ratio in water) suspended in 15 mL water was added 2 equivalents of thiourea in methanol. Yellow precipitates formed, were filtered and the filtrate was kept for crystallization. Crystals were grown by slow evaporation of a water/methanol solution at room temperature.

Refinement

All non-H atoms were refined anisotropically. Hydrogen atoms were located in a difference Fourier map and freely refined isotropically.

Figures

Fig. 1.
The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level (Symmetry code: i = 0.5-x, y, 0.5-z).
Fig. 2.
Packing diagram of the title complex showing the H-bonding interactions.

Crystal data

[Cd(CN)2(CH4N2S)2]·H2OF(000) = 328
Mr = 334.70Dx = 1.940 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 7211 reflections
a = 10.5955 (6) Åθ = 2.3–28.3°
b = 4.0782 (3) ŵ = 2.25 mm1
c = 13.4127 (8) ÅT = 294 K
β = 98.738 (1)°Parallelepiped, yellow
V = 572.84 (6) Å30.29 × 0.28 × 0.24 mm
Z = 2

Data collection

Bruker SMART APEX area-detector diffractometer1430 independent reflections
Radiation source: normal-focus sealed tube1376 reflections with I > 2σ(I)
graphiteRint = 0.017
ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.561, Tmax = 0.614k = −5→5
7211 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018All H-atom parameters refined
wR(F2) = 0.043w = 1/[σ2(Fo2) + (0.0181P)2 + 0.3434P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1430 reflectionsΔρmax = 0.73 e Å3
86 parametersΔρmin = −0.73 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.072 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.2500−0.06581 (5)0.25000.03756 (9)
S10.35766 (4)0.31297 (11)0.39821 (3)0.03220 (11)
C10.06927 (16)−0.2357 (5)0.29604 (12)0.0340 (3)
C20.28176 (16)0.2070 (4)0.49904 (12)0.0322 (3)
N1−0.02293 (17)−0.3264 (6)0.31974 (14)0.0499 (4)
N20.16014 (18)0.2695 (6)0.49815 (14)0.0535 (5)
N30.3466 (2)0.0687 (6)0.57851 (14)0.0518 (5)
O10.75000.2524 (6)0.25000.0451 (5)
H10.811 (3)0.376 (7)0.267 (2)0.059 (8)*
H20.121 (3)0.355 (8)0.451 (2)0.068 (9)*
H30.127 (3)0.243 (7)0.551 (2)0.056 (7)*
H40.429 (4)0.021 (8)0.578 (3)0.078 (10)*
H50.313 (3)0.013 (7)0.619 (3)0.064 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02792 (11)0.05064 (14)0.03652 (12)0.0000.01265 (7)0.000
S10.0315 (2)0.0395 (2)0.02651 (18)−0.00063 (16)0.00713 (14)0.00102 (16)
C10.0321 (8)0.0416 (9)0.0291 (7)0.0028 (7)0.0072 (6)0.0029 (7)
C20.0352 (8)0.0371 (8)0.0249 (7)−0.0004 (7)0.0063 (6)−0.0031 (6)
N10.0367 (8)0.0677 (12)0.0477 (9)−0.0040 (8)0.0145 (7)0.0077 (9)
N20.0403 (9)0.0892 (16)0.0338 (8)0.0155 (10)0.0148 (7)0.0124 (9)
N30.0417 (9)0.0832 (15)0.0319 (8)0.0100 (9)0.0099 (7)0.0164 (9)
O10.0373 (10)0.0563 (13)0.0423 (10)0.0000.0076 (8)0.000

Geometric parameters (Å, °)

Cd1—C1i2.2108 (17)C2—N21.312 (2)
Cd1—C12.2108 (17)N2—H20.78 (3)
Cd1—S12.6363 (5)N2—H30.84 (3)
Cd1—S1i2.6363 (5)N3—H40.90 (4)
S1—C21.7300 (17)N3—H50.72 (4)
C1—N11.134 (2)O1—H10.83 (3)
C2—N31.305 (2)
C1i—Cd1—C1143.47 (10)N3—C2—S1119.80 (15)
C1i—Cd1—S195.76 (4)N2—C2—S1121.13 (14)
C1—Cd1—S1105.48 (5)C2—N2—H2120 (2)
C1i—Cd1—S1i105.48 (5)C2—N2—H3120.4 (19)
C1—Cd1—S1i95.76 (4)H2—N2—H3119 (3)
S1—Cd1—S1i108.26 (2)C2—N3—H4119 (2)
C2—S1—Cd1104.11 (6)C2—N3—H5119 (3)
N1—C1—Cd1179.22 (18)H4—N3—H5122 (3)
N3—C2—N2119.05 (18)

Symmetry codes: (i) −x+1/2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H5···O1ii0.72 (4)2.26 (4)2.961 (2)166 (3)
N3—H4···S1ii0.90 (4)2.61 (4)3.470 (2)159 (3)
N2—H3···N1iii0.84 (3)2.22 (3)3.035 (2)163 (3)
N2—H2···N1iv0.78 (3)2.51 (3)3.286 (3)171 (3)
O1—H1···N1v0.83 (3)2.16 (3)2.988 (2)176 (3)

Symmetry codes: (ii) −x+1, −y, −z+1; (iii) −x, −y, −z+1; (iv) x, y+1, z; (v) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2290).

References

  • Ahmad, S., Sadaf, H., Akkurt, M., Sharif, S. & Khan, I. U. (2009). Acta Cryst. E65, m1191–m1192. [PMC free article] [PubMed]
  • Bruker (2008). SMART and SAINT Bruker AXS Inc., Madison. Wisconsin, USA.
  • Corao, E. & Baggio, S. (1969). Inorg. Chim. Acta, 3, 617–622.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hanif, M., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594.
  • Malik, M. R., Ali, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2010). J. Struct. Chem.51, 993–996.
  • Marcos, C., Alía, J. M., Adovasio, V., Prieto, M. & García-Granda, S. (1998). Acta Cryst. C54, 1225–1229.
  • Nawaz, S., Sadaf, S., Fettouhi, M., Fazal, A. & Ahmad, S. (2010a). Acta Cryst. E66, m950. [PMC free article] [PubMed]
  • Nawaz, S., Sadaf, S., Fettouhi, M., Fazal, A. & Ahmad, S. (2010b). Acta Cryst. E66, m951. [PMC free article] [PubMed]
  • Rajesh, N. P., Kannan, V., Ashok, M., Sivaji, K., Raghavan, P. S. & Ramasamy, P. (2004). J. Cryst. Growth, 262, 561–566.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoev, M. & Ruseva, S. (1994). Monatsh. Chem.125, 599–606.
  • Wang, X. Q., Yu, W. T., Xu, D., Lu, M. K. & Yuan, D. R. (2002). Acta Cryst. C58, m336–m337. [PubMed]
  • Yoshikawa, H., Nishikiori, S. & Ishida, T. (2003). J. Phys. Chem. B, 107, 9261–9267.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography