PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m985–m986.
Published online 2010 July 21. doi:  10.1107/S1600536810027984
PMCID: PMC3007583

Potassium clavulanate

Abstract

The title salt, K+·C8H8NO5 [systematic name: potassium (2R,5R,Z)-3-(2-hy­droxy­ethyl­idene)-7-oxo-4-oxa-1-aza­bicyclo­[3.2.0]heptane-2-carb­oxyl­ate], a widely used β-lactam anti­biotic, is usually chemically unstable even in the solid state owing to its tendency to be hydrolysed. In the crystal structure, the potassium cations are arranged along the a axis, forming inter­actions to the carboxyl­ate and hy­droxy groups, resulting in one-dimensional ionic columns. These columns are arranged along the b axis, connected by O—H(...)O hydrogen bonds, forming a layer in the ab plane.

Related literature

For the pharmacological activity of clavulanic acid and potassium clavulanate, see: Bird et al. (1982 [triangle]); Mayer & Deckwer (1996 [triangle]); Navarro (2005 [triangle]). For the hydrolysis properties of clavulanic acid and potassium clavulanate, see: Bersanetti et al. (2005 [triangle]); Brethauer et al. (2008 [triangle]); Haginaka et al. (1985 [triangle]); Hickey et al. (2007 [triangle]); Saudagar et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m985-scheme1.jpg

Experimental

Crystal data

  • K+·C8H8NO5
  • M r = 237.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m985-efi1.jpg
  • a = 4.3453 (6) Å
  • b = 7.8191 (11) Å
  • c = 27.491 (3) Å
  • V = 934.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.57 mm−1
  • T = 173 K
  • 0.24 × 0.04 × 0.01 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.876, T max = 0.994
  • 9047 measured reflections
  • 2138 independent reflections
  • 1433 reflections with I > 2σ(I)
  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.118
  • S = 1.12
  • 2138 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.56 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 839 Friedel pairs
  • Flack parameter: −0.05 (9)

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810027984/tk2689sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027984/tk2689Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Grateful thanks are given to the High Directorate of the Education Ministry of Indonesia for a research grant and PT Tempo Scan Pacific Indonesia for the supply of the material. KF was supported by a Grant-in-Aid for JSPS Fellows (Tokyo Institute of Technology G-COE Program: Education and the Research Centre for Emergence of New Mol­ecular Chemistry).

supplementary crystallographic information

Comment

Many pathogenic bacteria secrete β-lactamases as a defense mechanism against β-lactam antibiotics. Because such β-lactamases have the potential to inactivate β-lactam antibiotics, inhibitors for these β-lactamases are clinically very important. Clavulanic acid (CA) is a powerful naturally obtained inhibitor for bacterial β-lactamases produced by the organism Streptomyces clavuligerus. Although CA itself can act as an β-lactam antibiotic and is active against a wide spectrum of Gram-positive and Gram-negative bacteria (Mayer & Deckwer, 1996), it is much more effective as a drug in combination with β-lactamase-sensitive penicillins, such as amoxicillin. In that situation, CA protects the β-lactam ring of the amoxicillin from hydrolysis and can maintain its activity against β-lactamase producing bacteria (Bird et al., 1982). The CA potassium salt is widely used as a drug in injectable and solid form, especially combined with amoxicillin sodium and amoxicillin trihydrate (Navarro, 2005).

In this context, an understanding of the structure of CA is important in order to establish its ability to form molecular interactions. Unfortunately, CA is chemically unstable as are the other β-lactam antibiotics, being very sensitive to pH, temperature, and humidity via the hydrolysis degradation mechanism; (Bersanetti et al., 2005; Hickey et al., 2007; Saudagar et al., 2008). The decomposition is also self-catalyzed (Brethauer et al. 2008; Haginaka et al. 1985) and there have been some difficulties in obtaining a single crystals of CA. Therefore, until now there has been no report of a crystal structure of CA. In this study, single crystals of potassium clavulanate were successfully obtained by a low-temperature crystallization process and the crystal structure was determined.

In the molecular structure of potassium clavulanate, Fig. 1, the C5–O2 and C5–O3 distances of 1.262 (5)Å and 1.256 (5) Å, respectively, indicate that the negative charge of the carboxylate group is delocalised. The potassium cation is surrounded by six oxygen atoms, three O2, one O3 and two O4, deriv ed from four different clavulanate anions. The selected bond lengths around the potassium cation are listed in Table 1. These interactions are infinitely linked along the a axis and lead to an ionic (hydrophilic) column structure. These columns are connected by intermolecular O–H···O hydrogen bonds formed between O4-hydroxyl groups and carboxylate-O2 atoms, and form a hydrophobic layer in the ab plane; Fig. 2. By contrast, the remaining hydrophobic groups (i.e. bicyclo groups) form a hydrophobic layer so that the crystal structure comprises alternating hydrophilic and hydrophilic regions.

Experimental

The single crystals of potassium clavulanate were grown at a low temperature in order to prevent decomposition. After the compound was dissolved into an 8:2 mixture of methanol/water, a few drops of 1-propanol were added to the solution and the solution was kept at 235 K for a few days. The crystal used in the analysis was immediately covered with inert oil in order to prevent the decomposition through contact with atmospheric water vapor.

Refinement

The O- and C-bound H atoms were geometrically placed (O–H = 0.84 Å and C–H = 0.95–1.00 Å,) and refined as riding with Uiso(H) = 1.2Ueq(carrier atom). The absolute structure was assigned according to the known configuration of the acid, an assignment confirmed by the refinement of the Flack parameter (Flack, 1983).

Figures

Fig. 1.
Molecular structure of potassium clavulanate showing numbering scheme and displacement ellipsoids at the 50% probability .
Fig. 2.
Crystal packing viewed along the a axis. The hydrogen bonds are shown with red dotted lines.

Crystal data

K+·C8H8NO5F(000) = 488
Mr = 237.25Dx = 1.687 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 9047 reflections
a = 4.3453 (6) Åθ = 3.0–27.5°
b = 7.8191 (11) ŵ = 0.57 mm1
c = 27.491 (3) ÅT = 173 K
V = 934.1 (2) Å3Platet, colorless
Z = 40.24 × 0.04 × 0.01 mm

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer2138 independent reflections
Radiation source: rotating anode, Rigaku UltraX181433 reflections with I > 2σ(I)
graphiteRint = 0.088
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −5→5
Tmin = 0.876, Tmax = 0.994k = −10→10
9047 measured reflectionsl = −35→35

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.118w = 1/[σ2(Fo2) + (0.0305P)2 + 0.8726P] where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
2138 reflectionsΔρmax = 0.52 e Å3
137 parametersΔρmin = −0.56 e Å3
0 restraintsAbsolute structure: Flack (1983), 839 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.05 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.2101 (11)0.3967 (6)1.20066 (15)0.0297 (11)
C21.1168 (11)0.5309 (6)1.23813 (13)0.0276 (9)
H2A1.29010.57981.25690.033*
H2B0.94470.49641.25960.033*
C31.0199 (11)0.6369 (6)1.19340 (14)0.0250 (10)
H30.80270.67901.19420.030*
C41.2417 (9)0.5363 (6)1.11851 (13)0.0192 (8)
H41.42730.46111.11630.023*
C51.0676 (9)0.5213 (6)1.06982 (13)0.0201 (8)
C61.3526 (11)0.7148 (5)1.13197 (12)0.0218 (9)
C71.5398 (10)0.8175 (6)1.10754 (14)0.0245 (10)
H71.61690.77521.07750.029*
C81.6419 (11)0.9914 (5)1.12198 (13)0.0269 (9)
H8A1.50561.03821.14760.032*
H8B1.85510.98811.13460.032*
O11.3545 (10)0.2661 (4)1.20053 (11)0.0458 (9)
O21.1415 (8)0.6217 (4)1.03630 (9)0.0258 (7)
O30.8682 (9)0.4058 (4)1.06647 (10)0.0318 (7)
O41.6262 (9)1.0947 (4)1.07905 (10)0.0321 (8)
H4A1.69581.19261.08510.038*
O51.2401 (7)0.7604 (4)1.17783 (9)0.0266 (7)
N11.0715 (8)0.4860 (5)1.16197 (10)0.0242 (8)
K10.6334 (2)0.52404 (13)0.97836 (3)0.0284 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.036 (3)0.027 (2)0.026 (2)−0.001 (2)0.001 (2)0.0026 (19)
C20.029 (2)0.035 (2)0.0185 (16)−0.001 (3)−0.0026 (18)0.0049 (18)
C30.026 (2)0.025 (2)0.024 (2)0.0001 (19)0.0021 (19)0.0033 (18)
C40.0183 (18)0.018 (2)0.0211 (17)−0.0025 (18)−0.0009 (15)0.0023 (17)
C50.017 (2)0.022 (2)0.0214 (17)−0.0007 (18)0.0031 (15)−0.0040 (17)
C60.020 (2)0.028 (2)0.0174 (17)0.001 (2)−0.0018 (18)−0.0019 (16)
C70.027 (2)0.026 (2)0.0204 (18)−0.0043 (19)0.0037 (18)0.0005 (17)
C80.030 (2)0.025 (2)0.0255 (18)−0.003 (2)−0.002 (2)0.0008 (18)
O10.070 (3)0.033 (2)0.0340 (16)0.020 (2)0.006 (2)0.0063 (15)
O20.0265 (16)0.0296 (17)0.0213 (12)−0.0041 (16)−0.0002 (13)0.0045 (12)
O30.0366 (19)0.0304 (17)0.0285 (14)−0.0127 (16)−0.0071 (15)0.0038 (13)
O40.046 (2)0.0201 (15)0.0304 (15)−0.0063 (17)−0.0020 (17)0.0034 (12)
O50.0328 (18)0.0248 (17)0.0221 (13)−0.0045 (13)0.0064 (13)−0.0013 (13)
N10.032 (2)0.0236 (19)0.0174 (14)0.0030 (17)0.0036 (14)0.0043 (14)
K10.0242 (4)0.0362 (5)0.0248 (4)0.0008 (5)−0.0007 (4)0.0031 (4)

Geometric parameters (Å, °)

C1—O11.199 (6)C7—H70.9500
C1—N11.408 (5)C8—O41.432 (5)
C1—C21.525 (6)C8—H8A0.9900
C2—C31.542 (5)C8—H8B0.9900
C2—H2A0.9900O4—H4A0.8400
C2—H2B0.9900O2—K1i2.773 (3)
C3—O51.425 (5)O2—K1ii2.799 (3)
C3—N11.480 (5)O2—K12.827 (3)
C3—H31.0000O3—K12.786 (3)
C4—N11.459 (5)O4—K1ii2.818 (4)
C4—C61.522 (6)O4—K1iii2.865 (4)
C4—C51.542 (5)O4—H4A0.8400
C4—H41.0000K1—O2iv2.773 (3)
C5—O21.252 (5)K1—O2v2.799 (3)
C5—O31.256 (5)K1—O4v2.818 (4)
C6—C71.325 (6)K1—O4vi2.865 (4)
C6—O51.398 (4)K1—C7v3.198 (4)
C7—C81.485 (6)
O1—C1—N1130.1 (4)C1—N1—C4122.4 (4)
O1—C1—C2136.7 (4)C1—N1—C391.1 (3)
N1—C1—C293.2 (3)C4—N1—C3109.9 (3)
C1—C2—C384.5 (3)O2iv—K1—O382.78 (10)
C1—C2—H2A114.6O2iv—K1—O2v79.62 (9)
C3—C2—H2A114.6O3—K1—O2v116.68 (9)
C1—C2—H2B114.6O2iv—K1—O4v176.73 (10)
C3—C2—H2B114.6O3—K1—O4v95.70 (10)
H2A—C2—H2B111.7O2v—K1—O4v103.64 (9)
O5—C3—N1105.3 (3)O2iv—K1—O2101.77 (9)
O5—C3—C2114.9 (4)O3—K1—O246.69 (9)
N1—C3—C289.7 (3)O2v—K1—O278.70 (9)
O5—C3—H3114.7O4v—K1—O279.11 (9)
N1—C3—H3114.7O2iv—K1—O4vi79.21 (9)
C2—C3—H3114.7O3—K1—O4vi130.76 (10)
N1—C4—C6102.0 (3)O2v—K1—O4vi104.54 (9)
N1—C4—C5116.2 (3)O4v—K1—O4vi99.74 (9)
C6—C4—C5115.9 (3)O2—K1—O4vi176.76 (10)
N1—C4—H4107.4O2iv—K1—C590.29 (9)
C6—C4—H4107.4O3—K1—C523.47 (10)
C5—C4—H4107.4O2v—K1—C596.56 (11)
O2—C5—O3125.0 (3)O4v—K1—C589.41 (10)
O2—C5—C4117.7 (4)O2—K1—C523.45 (9)
O3—C5—C4117.2 (3)O4vi—K1—C5154.16 (10)
O2—C5—K164.0 (2)O2iv—K1—C7v137.98 (11)
O3—C5—K162.1 (2)O3—K1—C7v124.63 (12)
C4—C5—K1171.2 (3)O2v—K1—C7v60.23 (10)
O2—C5—K1i44.8 (2)O4v—K1—C7v45.13 (10)
O3—C5—K1i115.7 (3)O2—K1—C7v83.12 (10)
C4—C5—K1i106.1 (2)O4vi—K1—C7v98.25 (10)
K1—C5—K1i81.24 (8)C5—K1—C7v105.17 (11)
C7—C6—O5121.1 (4)O2iv—K1—C8vi89.53 (10)
C7—C6—C4128.8 (4)O3—K1—C8vi154.09 (11)
O5—C6—C4110.0 (3)O2v—K1—C8vi85.89 (9)
C6—C7—C8127.1 (4)O4v—K1—C8vi90.62 (10)
C6—C7—K1ii105.7 (3)O2—K1—C8vi158.79 (11)
C8—C7—K1ii90.4 (2)O4vi—K1—C8vi23.49 (9)
C6—C7—H7116.5C5—K1—C8vi177.48 (12)
C8—C7—H7116.5C7v—K1—C8vi76.57 (11)
K1ii—C7—H771.9O2iv—K1—C5iv18.57 (9)
O4—C8—C7106.4 (3)O3—K1—C5iv68.43 (10)
O4—C8—K1iii52.9 (2)O2v—K1—C5iv96.76 (10)
C7—C8—K1iii86.5 (2)O4v—K1—C5iv158.42 (10)
O4—C8—K1ii49.2 (2)O2—K1—C5iv98.32 (9)
C7—C8—K1ii64.7 (2)O4vi—K1—C5iv81.62 (9)
K1iii—C8—K1ii76.39 (8)C5—K1—C5iv81.24 (8)
O4—C8—H8A110.5C7v—K1—C5iv156.37 (11)
C7—C8—H8A110.5C8vi—K1—C5iv97.88 (10)
K1iii—C8—H8A160.2O2iv—K1—C8v159.90 (10)
K1ii—C8—H8A101.1O3—K1—C8v115.98 (12)
O4—C8—H8B110.5O2v—K1—C8v85.05 (9)
C7—C8—H8B110.5O4v—K1—C8v22.62 (9)
K1iii—C8—H8B72.8O2—K1—C8v87.75 (10)
K1ii—C8—H8B149.1O4vi—K1—C8v92.28 (10)
H8A—C8—H8B108.6C5—K1—C8v104.40 (10)
C5—O2—K1i116.6 (3)C7v—K1—C8v24.83 (10)
C5—O2—K1ii136.3 (3)C8vi—K1—C8v76.39 (8)
K1i—O2—K1ii101.51 (10)C5iv—K1—C8v173.89 (10)
C5—O2—K192.6 (2)O2iv—K1—K1ii90.24 (7)
K1i—O2—K1101.77 (9)O3—K1—K1ii81.25 (7)
K1ii—O2—K1100.16 (10)O2v—K1—K1ii39.02 (7)
C5—O3—K194.5 (2)O4v—K1—K1ii92.38 (7)
C8—O4—K1ii108.2 (2)O2—K1—K1ii39.68 (6)
C8—O4—K1iii103.6 (3)O4vi—K1—K1ii143.56 (7)
K1ii—O4—K1iii99.74 (9)C5—K1—K1ii58.85 (8)
C8—O4—H4A109.5C7v—K1—K1ii66.94 (8)
K1ii—O4—H4A133.2C8vi—K1—K1ii123.66 (8)
K1iii—O4—H4A97.3C5iv—K1—K1ii99.19 (7)
C6—O5—C3109.4 (3)C8v—K1—K1ii85.90 (8)
O1—C1—C2—C3168.2 (6)C5—O2—K1—O3−6.0 (2)
N1—C1—C2—C3−9.2 (3)K1i—O2—K1—O3111.90 (16)
C1—C2—C3—O5−98.0 (4)K1ii—O2—K1—O3−143.96 (16)
C1—C2—C3—N18.8 (3)C5—O2—K1—O2v138.9 (2)
N1—C4—C5—O2151.2 (4)K1i—O2—K1—O2v−103.25 (11)
C6—C4—C5—O231.4 (5)K1ii—O2—K1—O2v0.89 (9)
N1—C4—C5—O3−30.8 (6)C5—O2—K1—O4v−114.7 (3)
C6—C4—C5—O3−150.6 (4)K1i—O2—K1—O4v3.21 (10)
N1—C4—C5—K152 (2)K1ii—O2—K1—O4v107.35 (10)
C6—C4—C5—K1−67.5 (19)C5—O2—K1—O4vi−45.1 (17)
N1—C4—C5—K1i−161.8 (3)K1i—O2—K1—O4vi72.8 (16)
C6—C4—C5—K1i78.4 (4)K1ii—O2—K1—O4vi177 (45)
N1—C4—C6—C7174.2 (4)K1i—O2—K1—C5117.9 (3)
C5—C4—C6—C7−58.6 (6)K1ii—O2—K1—C5−138.0 (3)
N1—C4—C6—O5−2.6 (4)C5—O2—K1—C7v−160.2 (3)
C5—C4—C6—O5124.7 (4)K1i—O2—K1—C7v−42.33 (11)
O5—C6—C7—C8−3.7 (7)K1ii—O2—K1—C7v61.82 (11)
C4—C6—C7—C8179.9 (4)C5—O2—K1—C8vi−176.9 (3)
O5—C6—C7—K1ii−106.5 (4)K1i—O2—K1—C8vi−59.1 (3)
C4—C6—C7—K1ii77.1 (5)K1ii—O2—K1—C8vi45.1 (3)
C6—C7—C8—O4−137.0 (5)C5—O2—K1—C5iv43.6 (2)
K1ii—C7—C8—O4−26.9 (3)K1i—O2—K1—C5iv161.47 (10)
C6—C7—C8—K1iii173.3 (5)K1ii—O2—K1—C5iv−94.39 (11)
K1ii—C7—C8—K1iii−76.57 (10)C5—O2—K1—C8v−135.7 (3)
C6—C7—C8—K1ii−110.1 (5)K1i—O2—K1—C8v−17.85 (11)
O3—C5—O2—K1i−92.7 (4)K1ii—O2—K1—C8v86.29 (10)
C4—C5—O2—K1i85.1 (4)C5—O2—K1—K1ii138.0 (3)
K1—C5—O2—K1i−104.54 (19)K1i—O2—K1—K1ii−104.15 (11)
O3—C5—O2—K1ii119.4 (4)O2—C5—K1—O2iv−120.1 (3)
C4—C5—O2—K1ii−62.7 (5)O3—C5—K1—O2iv70.9 (3)
K1—C5—O2—K1ii107.6 (3)C4—C5—K1—O2iv−16.8 (18)
K1i—C5—O2—K1ii−147.8 (5)K1i—C5—K1—O2iv−163.73 (9)
O3—C5—O2—K111.8 (5)O2—C5—K1—O3169.1 (4)
C4—C5—O2—K1−170.3 (3)C4—C5—K1—O3−87.6 (18)
K1i—C5—O2—K1104.54 (19)K1i—C5—K1—O3125.4 (3)
O2—C5—O3—K1−12.0 (5)O2—C5—K1—O2v−40.5 (2)
C4—C5—O3—K1170.1 (3)O3—C5—K1—O2v150.5 (3)
K1i—C5—O3—K1−63.5 (2)C4—C5—K1—O2v62.8 (18)
C7—C8—O4—K1ii32.7 (4)K1i—C5—K1—O2v−84.14 (9)
K1iii—C8—O4—K1ii105.23 (18)O2—C5—K1—O4v63.2 (2)
C7—C8—O4—K1iii−72.5 (3)O3—C5—K1—O4v−105.9 (3)
K1ii—C8—O4—K1iii−105.23 (18)C4—C5—K1—O4v166.5 (18)
C7—C6—O5—C3173.7 (4)K1i—C5—K1—O4v19.52 (9)
C4—C6—O5—C3−9.2 (4)O3—C5—K1—O2−169.1 (4)
N1—C3—O5—C616.9 (4)C4—C5—K1—O2103.3 (19)
C2—C3—O5—C6113.9 (4)K1i—C5—K1—O2−43.7 (2)
O1—C1—N1—C4−53.6 (7)O2—C5—K1—O4vi174.7 (2)
C2—C1—N1—C4124.1 (4)O3—C5—K1—O4vi5.7 (4)
O1—C1—N1—C3−168.1 (6)C4—C5—K1—O4vi−82.0 (19)
C2—C1—N1—C39.6 (3)K1i—C5—K1—O4vi131.1 (2)
C6—C4—N1—C1−91.7 (5)O2—C5—K1—C7v20.4 (3)
C5—C4—N1—C1141.3 (4)O3—C5—K1—C7v−148.7 (3)
C6—C4—N1—C313.0 (4)C4—C5—K1—C7v123.7 (18)
C5—C4—N1—C3−114.0 (4)K1i—C5—K1—C7v−23.27 (12)
O5—C3—N1—C1106.3 (3)O2—C5—K1—C8vi154 (2)
C2—C3—N1—C1−9.5 (3)O3—C5—K1—C8vi−15 (2)
O5—C3—N1—C4−18.9 (4)C4—C5—K1—C8vi−103 (3)
C2—C3—N1—C4−134.7 (3)K1i—C5—K1—C8vi110 (2)
C5—O3—K1—O2iv−107.7 (3)O2—C5—K1—C5iv−136.3 (2)
C5—O3—K1—O2v−33.2 (3)O3—C5—K1—C5iv54.6 (3)
C5—O3—K1—O4v75.2 (3)C4—C5—K1—C5iv−33.0 (19)
C5—O3—K1—O26.0 (2)K1i—C5—K1—C5iv180.0
C5—O3—K1—O4vi−176.7 (2)O2—C5—K1—C8v46.1 (3)
C5—O3—K1—C7v37.6 (3)O3—C5—K1—C8v−123.0 (3)
C5—O3—K1—C8vi178.5 (2)C4—C5—K1—C8v149.4 (18)
C5—O3—K1—C5iv−120.0 (3)K1i—C5—K1—C8v2.41 (12)
C5—O3—K1—C8v64.7 (3)O2—C5—K1—K1ii−30.0 (2)
C5—O3—K1—K1ii−16.4 (2)O3—C5—K1—K1ii161.0 (3)
C5—O2—K1—O2iv62.1 (3)C4—C5—K1—K1ii73.4 (18)
K1i—O2—K1—O2iv180.0K1i—C5—K1—K1ii−73.62 (7)
K1ii—O2—K1—O2iv−75.85 (11)

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+3/2, −z+2; (iii) x+3/2, −y+3/2, −z+2; (iv) x−1, y, z; (v) x−1/2, −y+3/2, −z+2; (vi) x−3/2, −y+3/2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4A···O3vii0.841.902.673 (5)153

Symmetry codes: (vii) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2689).

References

  • Bersanetti, P. A., Almeida, R. M. R. G., Barboza, M., Araújo, M. L. G. C. & Hokka, C. O. (2005). Biochem. Eng. J.23, 31–36.
  • Bird, A. E., Bellis, J. M. & Basson, B. C. (1982). Analyst, 107, 1241–1245.
  • Brethauer, S., Held, M. & Panke, S. (2008). Biotechnol. Bioeng.100, 439–447. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Haginaka, J., Yasuda, H., Uno, T. & Nakagawa, T. (1985). Chem. Pharm. Bull.33, 218–224.
  • Hickey, M. B., Peterson, M. L., Manas, E. S., Alvarez, J., Haeffner, F. & Almarsson, O. (2007). J. Pharm. Sci.96, 1090–1099. [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Mayer, A. F. & Deckwer, W. D. (1996). Appl. Microbiol. Biotechnol.45, 41–46. [PubMed]
  • Navarro, A. S. (2005). Clin. Pharmacokinet.44, 1097–1115. [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Saudagar, P. S., Survase, S. A. & Singhal, R. S. (2008). Biotechnol. Adv.26, 335–351. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst A64 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography