PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2184.
Published online 2010 July 31. doi:  10.1107/S1600536810024864
PMCID: PMC3007581

2-(2-Chloro­phen­yl)-3-(3,4-dimeth­oxy­phen­yl)quinoxaline

Abstract

The title compound, C22H17ClN2O2, was synthesized by the condensation reaction between 1,2-phenyl­enediamine and 2-chloro-3′,4′-dimeth­oxy­benzil in boiling acetic acid. The chloro­phenyl and dimeth­oxy­phenyl rings make dihedral angles of 78.45 (5) and 35.60 (4)°, respectively, with the quinoxaline unit.

Related literature

N-heterocyclic aromatic compounds are of current inter­est as ligands in one- and two-dimensional coordination polymers with silver, see: Fitchett & Steel (2006 [triangle]). The quinoxaline moiety yields a wide variety of potential bidentate bridges in polymeric networks with silver, see: Patra et al. (2007 [triangle]). For the synthesis and characterization of quinoxalines, see: Crundwell & Stacy (2005 [triangle]), of benzo[g]quinoxalines, see: Cantalupo et al. (2006 [triangle]) and of pyrazino­[2,3-g]quinoxalines, see: Bellizzi et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2184-scheme1.jpg

Experimental

Crystal data

  • C22H17ClN2O2
  • M r = 376.83
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2184-efi1.jpg
  • a = 14.6741 (13) Å
  • b = 7.9731 (7) Å
  • c = 21.6996 (17) Å
  • β = 132.560 (6)°
  • V = 1870.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 293 K
  • 0.42 × 0.24 × 0.19 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.699, T max = 1.000
  • 46880 measured reflections
  • 7159 independent reflections
  • 4223 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.202
  • S = 1.03
  • 7159 reflections
  • 246 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024864/ds2038sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024864/ds2038Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was funded by a CCSU-AAUP research grant.

supplementary crystallographic information

Comment

N-heterocyclic aromatic compounds are of current interest as ligands in one- and two-dimensional coordination polymers with silver (Fitchett et al., 2006). The quinoxaline moiety specifically is an enticing aromatic heterocycle since it is readily formed via condensation reactions between diketones and di- or tetra-amines and it yields a wide variety of potential bidentate bridges in polymeric networks with silver (Patra et al., 2007).

The Crundwell lab has synthesized and characterized many quinoxalines (Crundwell et al., 2005), benzo[g]quinoxalines (Cantalupo et al., 2006), and pyrazino[2,3-g]quinoxalines (Bellizzi et al., 2006) as potential metal ligands. The title compound was formed by the condensation of two commercial products: 1,2-phenylenediamine and 2-chloro-3',4'-dimethoxybenzil. The resulting quinoxaline had bond lengths that fell within expectated values and had ring torsion angles of 78.45 (5)° and 35.60 (4)° with respect to the planar quinoxaline moiety.

Experimental

To a 100 mL round bottom flask equipped with a Hickman still and a reflux condenser was combined 0.1556 g (1.46 mmol) 1,2-phenylenediamine and 0.4465 g (1.46 mmol) of 2-chloro-3',4'-dimethoxybenzil in 50 mL of concentrated acetic acid.

The mixture was refluxed for 16 h and the resulting solution was chilled then filtered to produce a pale yellow solid. The solid was recrystallized from a 50/50 mixture of toluene and ethanol to yield 0.312 g of 2-(2-chlorophenyl)-3-(3,4-dimethoxyphenyl)-quinoxaline (56.5%).

mp 407.8; 1H NMR (300 MHz, CDCl3): δ 8.193 (ddd, 2H, J = 7.2 Hz, J = 2.4 Hz, J = 0.6 Hz), 7.797 (ddt, 2H, J = 7.2 Hz, J = 6.9 Hz, J = 2.4 Hz), 7.528 (ddd, 1H, J = 5.7 Hz, J = 2.4 Hz, J = 1.8 Hz), 7.372 (m, 3H), 7.210 (dd, 1H, J = 8.4 Hz, J = 2.1 Hz), 7.014 (d, 1H, J = 2.1 Hz), 6.818 (d, 1H, J = 8.4 Hz), 3.878 (s, 3H), 3.657 (s, 3H); 13C NMR (300 MHz, CDCl3): δ 153.15, 151.93, 149.77, 148.31, 141.76, 140.54, 139.02, 133.11, 131.27, 130.83, 130.39, 130.04, 129.88, 129.74, 129.22, 129.19, 127.13, 122.69, 112.43, 110.76, 55.84, 55.62.

Refinement

Hydrogen atoms were included in calculated positions with a C—H distance of 0.95 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.

Figures

Fig. 1.
A view of the title compound (Farrugia, 1997). Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C22H17ClN2O2F(000) = 784
Mr = 376.83Dx = 1.338 Mg m3
Monoclinic, P21/cMelting point: 407.8 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.6741 (13) ÅCell parameters from 11257 reflections
b = 7.9731 (7) Åθ = 4.3–34.1°
c = 21.6996 (17) ŵ = 0.22 mm1
β = 132.560 (6)°T = 293 K
V = 1870.0 (3) Å3Block, yellow
Z = 40.42 × 0.24 × 0.19 mm

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer7159 independent reflections
Radiation source: Enhance (Mo) X-ray Source4223 reflections with I > 2σ(I)
graphiteRint = 0.051
Detector resolution: 16.1790 pixels mm-1θmax = 33.9°, θmin = 4.4°
ω scansh = −22→22
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −12→12
Tmin = 0.699, Tmax = 1.000l = −33→33
46880 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0955P)2 + 0.4554P] where P = (Fo2 + 2Fc2)/3
7159 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Experimental. Hydrogen atoms were included in calculated positions with a C—H distance of 0.95 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.CrysAlisPro (Oxford Diffraction Ltd., 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.25132 (14)0.6495 (2)0.51893 (9)0.0385 (3)
N10.34516 (13)0.7171 (2)0.59164 (8)0.0450 (3)
C20.12494 (14)0.6840 (2)0.47750 (9)0.0370 (3)
N20.09944 (13)0.7886 (2)0.51157 (8)0.0442 (3)
C30.19586 (15)0.8590 (2)0.58719 (9)0.0408 (3)
C40.17061 (19)0.9715 (3)0.62465 (12)0.0566 (5)
H40.08930.99850.59730.068*
C50.2658 (2)1.0397 (3)0.70076 (12)0.0597 (5)
H50.24901.11320.72530.072*
C60.3897 (2)1.0000 (3)0.74291 (12)0.0583 (5)
H60.45371.04650.79520.070*
C70.41593 (18)0.8936 (3)0.70727 (11)0.0537 (5)
H70.49780.86840.73520.064*
C80.31893 (15)0.8217 (2)0.62808 (9)0.0410 (3)
C90.28488 (14)0.5376 (2)0.48137 (9)0.0413 (4)
C100.27772 (17)0.3643 (3)0.48187 (11)0.0501 (4)
C110.30563 (18)0.2628 (3)0.44390 (13)0.0590 (5)
H110.30050.14660.44460.071*
C120.34054 (19)0.3366 (3)0.40569 (13)0.0647 (6)
H120.35830.27000.37980.078*
C130.3498 (2)0.5088 (3)0.40510 (14)0.0652 (6)
H130.37440.55650.37920.078*
C140.32275 (16)0.6126 (3)0.44284 (12)0.0524 (4)
H140.32950.72850.44260.063*
Cl10.23549 (8)0.27027 (8)0.53138 (5)0.0854 (2)
C150.01547 (14)0.6069 (2)0.39677 (9)0.0379 (3)
C160.00943 (14)0.5764 (2)0.33031 (10)0.0396 (3)
H160.07770.60000.33700.047*
C17−0.09655 (14)0.5118 (2)0.25514 (10)0.0397 (3)
C18−0.20106 (15)0.4789 (2)0.24403 (10)0.0422 (4)
C19−0.19425 (16)0.5068 (2)0.30999 (11)0.0474 (4)
H19−0.26220.48260.30360.057*
C20−0.08736 (16)0.5706 (2)0.38564 (11)0.0457 (4)
H20−0.08470.58910.42910.055*
O1−0.10954 (11)0.47659 (19)0.18770 (8)0.0534 (3)
C21−0.0123 (2)0.5263 (3)0.19222 (14)0.0655 (6)
H21A0.00160.64470.20270.098*
H21B−0.03460.50120.14020.098*
H21C0.06180.46670.23680.098*
O2−0.30319 (12)0.42185 (19)0.16651 (8)0.0567 (4)
C22−0.4155 (2)0.4121 (4)0.14824 (15)0.0743 (7)
H22A−0.40750.33130.18450.111*
H22B−0.48080.37850.09100.111*
H22C−0.43450.51990.15680.111*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0357 (7)0.0417 (8)0.0320 (7)0.0051 (6)0.0204 (6)0.0026 (6)
N10.0359 (6)0.0552 (9)0.0349 (6)0.0019 (6)0.0203 (6)−0.0007 (6)
C20.0338 (7)0.0411 (8)0.0293 (6)0.0050 (6)0.0186 (6)0.0025 (6)
N20.0368 (6)0.0536 (8)0.0321 (6)0.0080 (6)0.0193 (5)−0.0007 (6)
C30.0417 (8)0.0429 (8)0.0317 (7)0.0051 (6)0.0223 (6)0.0019 (6)
C40.0561 (11)0.0628 (12)0.0428 (9)0.0140 (9)0.0302 (9)−0.0030 (8)
C50.0749 (13)0.0549 (11)0.0437 (9)0.0048 (10)0.0378 (10)−0.0061 (8)
C60.0662 (12)0.0590 (12)0.0391 (8)−0.0155 (10)0.0315 (9)−0.0108 (8)
C70.0441 (9)0.0661 (12)0.0392 (8)−0.0103 (8)0.0235 (7)−0.0077 (8)
C80.0394 (8)0.0446 (8)0.0327 (7)−0.0015 (6)0.0218 (6)0.0007 (6)
C90.0316 (7)0.0486 (9)0.0331 (7)0.0069 (6)0.0176 (6)0.0021 (6)
C100.0454 (9)0.0512 (10)0.0430 (8)0.0113 (8)0.0256 (7)0.0072 (7)
C110.0497 (10)0.0554 (11)0.0498 (10)0.0138 (8)0.0248 (9)−0.0027 (8)
C120.0530 (11)0.0824 (16)0.0535 (11)0.0104 (10)0.0339 (10)−0.0119 (10)
C130.0634 (12)0.0839 (16)0.0655 (13)−0.0011 (11)0.0504 (11)−0.0087 (11)
C140.0441 (9)0.0675 (12)0.0512 (10)0.0010 (8)0.0345 (8)−0.0038 (9)
Cl10.1261 (6)0.0590 (4)0.1054 (5)0.0107 (3)0.0921 (5)0.0207 (3)
C150.0331 (7)0.0407 (8)0.0318 (7)0.0055 (6)0.0187 (6)0.0020 (6)
C160.0323 (7)0.0445 (8)0.0358 (7)0.0019 (6)0.0206 (6)−0.0008 (6)
C170.0379 (7)0.0402 (8)0.0350 (7)0.0024 (6)0.0222 (6)−0.0015 (6)
C180.0361 (7)0.0378 (8)0.0403 (8)−0.0029 (6)0.0208 (6)−0.0038 (6)
C190.0407 (8)0.0528 (10)0.0490 (9)−0.0066 (7)0.0305 (8)−0.0023 (8)
C200.0433 (8)0.0528 (10)0.0413 (8)0.0004 (7)0.0287 (7)0.0002 (7)
O10.0455 (7)0.0715 (9)0.0404 (6)−0.0064 (6)0.0279 (6)−0.0139 (6)
C210.0643 (12)0.0865 (16)0.0571 (11)−0.0110 (11)0.0456 (11)−0.0154 (11)
O20.0420 (6)0.0675 (9)0.0488 (7)−0.0163 (6)0.0259 (6)−0.0196 (6)
C220.0475 (11)0.0965 (19)0.0659 (13)−0.0286 (11)0.0332 (10)−0.0219 (13)

Geometric parameters (Å, °)

C1—N11.318 (2)C12—H120.9300
C1—C21.438 (2)C13—C141.397 (3)
C1—C91.499 (2)C13—H130.9300
N1—C81.371 (2)C14—H140.9300
C2—N21.325 (2)C15—C201.388 (2)
C2—C151.490 (2)C15—C161.405 (2)
N2—C31.367 (2)C16—C171.383 (2)
C3—C81.403 (2)C16—H160.9300
C3—C41.418 (2)C17—O11.371 (2)
C4—C51.362 (3)C17—C181.407 (2)
C4—H40.9300C18—O21.368 (2)
C5—C61.411 (3)C18—C191.384 (3)
C5—H50.9300C19—C201.389 (2)
C6—C71.367 (3)C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C81.414 (2)O1—C211.419 (3)
C7—H70.9300C21—H21A0.9600
C9—C101.386 (3)C21—H21B0.9600
C9—C141.412 (3)C21—H21C0.9600
C10—C111.400 (3)O2—C221.412 (3)
C10—Cl11.732 (2)C22—H22A0.9600
C11—C121.368 (3)C22—H22B0.9600
C11—H110.9300C22—H22C0.9600
C12—C131.381 (4)
N1—C1—C2122.11 (15)C12—C13—C14121.0 (2)
N1—C1—C9115.67 (14)C12—C13—H13119.5
C2—C1—C9122.21 (13)C14—C13—H13119.5
C1—N1—C8117.75 (14)C13—C14—C9118.5 (2)
N2—C2—C1120.19 (14)C13—C14—H14120.7
N2—C2—C15115.39 (13)C9—C14—H14120.7
C1—C2—C15124.41 (14)C20—C15—C16118.62 (14)
C2—N2—C3118.32 (14)C20—C15—C2118.11 (14)
N2—C3—C8121.09 (15)C16—C15—C2123.21 (14)
N2—C3—C4119.23 (16)C17—C16—C15121.01 (15)
C8—C3—C4119.69 (16)C17—C16—H16119.5
C5—C4—C3119.79 (19)C15—C16—H16119.5
C5—C4—H4120.1O1—C17—C16124.67 (15)
C3—C4—H4120.1O1—C17—C18115.51 (14)
C4—C5—C6120.75 (19)C16—C17—C18119.82 (15)
C4—C5—H5119.6O2—C18—C19125.31 (16)
C6—C5—H5119.6O2—C18—C17115.67 (16)
C7—C6—C5120.32 (17)C19—C18—C17119.02 (15)
C7—C6—H6119.8C18—C19—C20121.00 (16)
C5—C6—H6119.8C18—C19—H19119.5
C6—C7—C8120.12 (18)C20—C19—H19119.5
C6—C7—H7119.9C15—C20—C19120.50 (16)
C8—C7—H7119.9C15—C20—H20119.7
N1—C8—C3120.49 (14)C19—C20—H20119.7
N1—C8—C7120.19 (16)C17—O1—C21117.50 (14)
C3—C8—C7119.31 (17)O1—C21—H21A109.5
C10—C9—C14119.28 (17)O1—C21—H21B109.5
C10—C9—C1122.33 (16)H21A—C21—H21B109.5
C14—C9—C1118.37 (16)O1—C21—H21C109.5
C9—C10—C11121.20 (19)H21A—C21—H21C109.5
C9—C10—Cl1119.82 (15)H21B—C21—H21C109.5
C11—C10—Cl1118.97 (17)C18—O2—C22117.59 (16)
C12—C11—C10119.1 (2)O2—C22—H22A109.5
C12—C11—H11120.4O2—C22—H22B109.5
C10—C11—H11120.4H22A—C22—H22B109.5
C11—C12—C13120.9 (2)O2—C22—H22C109.5
C11—C12—H12119.6H22A—C22—H22C109.5
C13—C12—H12119.6H22B—C22—H22C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2038).

References

  • Bellizzi, M., Crundwell, G., Zeller, M., Hunter, A. D. & McBurney, B. (2006). Acta Cryst. E62, o5249–o5251.
  • Cantalupo, S., Salvati, H., McBurney, B., Raju, R., Glagovich, N. & Crundwell, G. (2006). J. Chem. Crystallogr.36, 17–24.
  • Crundwell, G. & Stacy, V. (2005). Acta Cryst. E61, o3159–o3160.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fitchett, C. M. & Steel, P. J. (2006). Dalton Trans. pp. 4886–4888. [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Patra, G. K., Goldberg, I., De, S. & Datta, D. (2007). CrystEngComm, 9, 828–832.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography