PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m879.
Published online 2010 July 3. doi:  10.1107/S1600536810025286
PMCID: PMC3007580

Poly[(μ-β-hexa­cosa­oxidoocta­molybdato)tetra­kis­[3-(2-pyrid­yl)pyrazole]­dizinc(II)]

Abstract

In the hydro­thermally prepared title compound, [Mo8Zn2O26(C8H7N3)4]n or {[Zn(C8H7N3)2]2(Mo8O26)}n, the ZnII atom is coordinated by two N,N′-bidentate 3-(2-pyrid­yl)pyrazole ligands and two O atoms from adjacent octa­molybdate polyanions, generating a distorted cis-ZnO2N4 octa­hedral geometry for the divalent metal ion. The complete octa­molbydate unit is generated by crystallographic inversion symmetry. The polyhedral connectivity leads to [100] chains in the crystal and N—H(...)O and N—H(...)(O,O) hydrogen bonds help to consolidate the packing.

Related literature

For background to polyoxidomolybdates, see: Pope & Müller (1991 [triangle]). For related structures, see: Artero & Proust (2000 [triangle]); Lee et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m879-scheme1.jpg

Experimental

Crystal data

  • [Mo8Zn2O26(C8H7N3)4]
  • M r = 947.46
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m879-efi1.jpg
  • a = 10.0791 (8) Å
  • b = 11.5339 (10) Å
  • c = 11.6078 (10) Å
  • α = 89.007 (1)°
  • β = 74.731 (1)°
  • γ = 74.623 (1)°
  • V = 1253.19 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.97 mm−1
  • T = 296 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.717, T max = 0.797
  • 8795 measured reflections
  • 4353 independent reflections
  • 3927 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.058
  • S = 1.00
  • 4353 reflections
  • 361 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025286/hb5511sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025286/hb5511Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Inter­national Cooperation Program for Excellent Lectures of 2008 by the Shandong Provincial Education Department is gratefully acknowledged.

supplementary crystallographic information

Comment

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, As shown in Figure 1 and 2, the hexa-coordinated zinc cations act as a bridge to link two neighboring octamolybdate polyanions via terminal oxygen atoms, which are further chelated by two 3-(2-pyridyl)pyrazole ligands via four nitrogen atoms. The Zn—O and Zn—N distances are in the range of 2.104 (2)—2.252 (2) and 2.065 (2)—2.196 (2) Å, respectively.

The octamolybdate polyanion (Mo8O26)2- shows a B configuration with a center of symmetry, which can be bisected into two [(/m5-O)(Mo4O12)]2- planar subunits by Mo—O breaking bonds with the related lengths in the range of 2.26–2.39 Å, similar to previously reported isolated clusters (Lee et al., 2002). The [(/m5-O)(Mo4O12)]2- plane could be considered as one Mo atom protrudes outward from the other four Mo constituted planar. There are two types of Mo—-O bonds in octamolybdate polyanion: terminal Mo—O, and bridging /m2-O—Mo, /m3-O—Mo, and /m5-O—Mo bonds. The related bond distances vary from the shortest, 1.690 (2) Å for one of the terminal Mo—O bonds, to the longest 2.389 (2) Å for one of the bonds to the unusual /m5-O atom that sits in the 4Mo plane near the center of each Mo—O moiety.

In addition, it is noteworthy that the multipoint hydrogen-bonding links also exist between the hydrogen atoms from organic amines and the cluster of the surface oxygen atoms from the wave-like chains; this may make a contribution to stabilizing the chain structures, shown in figure 3.

Experimental

The synthesis was performed in a 25-ml Teflon-lined stainless steel vessel. MoO3 (1 mmol, 0.144 g), zinc(II) acetate dihydrate (0.2 mmol, 0.044 g), 3-(2-pyridyl)pyrazole (0.35 mmol, 0.05 g), and H2O (14 ml) were mixed and heated to 423 K for three days. Upon cooling, colourless blocks of (I) were recovered by vacuum filtration.

Refinement

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). The hydrogen atoms bound to N atoms were refined in calculated positions using a riding model with a N—H distance of 0.86 Å and Uiso = 1.2Ueq(C).

Figures

Fig. 1.
The building blocks of (I) with displacement ellipsoids drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
Fig. 2.
The crystal packing of (I) displayed with N—H···O hydrogen bonds as dashed lines.
Fig. 3.
The chain structure.

Crystal data

[Mo8Zn2O26(C8H7N3)4]Z = 2
Mr = 947.46F(000) = 908
Triclinic, P1Dx = 2.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0791 (8) ÅCell parameters from 6222 reflections
b = 11.5339 (10) Åθ = 2.2–27.4°
c = 11.6078 (10) ŵ = 2.97 mm1
α = 89.007 (1)°T = 296 K
β = 74.731 (1)°Block, colorless
γ = 74.623 (1)°0.12 × 0.10 × 0.08 mm
V = 1253.19 (18) Å3

Data collection

Bruker APEXII CCD diffractometer4353 independent reflections
Radiation source: fine-focus sealed tube3927 reflections with I > 2σ(I)
graphiteRint = 0.015
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −11→11
Tmin = 0.717, Tmax = 0.797k = −13→13
8795 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.038P)2 + 0.1P] where P = (Fo2 + 2Fc2)/3
4353 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0264 (4)−0.0590 (3)0.3713 (3)0.0412 (8)
H1−0.0334−0.10450.41120.049*
C20.1715 (4)−0.0950 (3)0.3361 (3)0.0423 (8)
H20.2305−0.16890.34710.051*
C30.2132 (3)0.0033 (3)0.2795 (3)0.0308 (7)
C40.3522 (3)0.0215 (3)0.2193 (3)0.0325 (7)
C50.4798 (4)−0.0599 (3)0.2184 (4)0.0510 (10)
H50.4822−0.13050.25870.061*
C60.6048 (4)−0.0338 (4)0.1556 (4)0.0607 (11)
H60.6928−0.08620.15500.073*
C70.5986 (4)0.0683 (3)0.0952 (4)0.0529 (10)
H70.68200.08450.04990.063*
C80.4674 (4)0.1478 (3)0.1015 (3)0.0404 (8)
H80.46360.21860.06130.048*
C90.2980 (4)0.5417 (3)0.0625 (3)0.0411 (8)
H90.34720.60020.05690.049*
C100.2574 (4)0.4981 (3)−0.0278 (3)0.0411 (8)
H100.27280.5205−0.10650.049*
C110.1880 (3)0.4130 (3)0.0236 (3)0.0289 (7)
C120.1196 (3)0.3344 (3)−0.0244 (3)0.0281 (7)
C130.1012 (4)0.3425 (3)−0.1379 (3)0.0379 (8)
H130.13450.3977−0.18910.045*
C140.0328 (4)0.2675 (3)−0.1741 (3)0.0437 (9)
H140.01760.2720−0.24990.052*
C15−0.0133 (4)0.1852 (3)−0.0965 (3)0.0445 (9)
H15−0.05910.1331−0.11970.053*
C160.0094 (3)0.1815 (3)0.0150 (3)0.0382 (8)
H16−0.02240.12640.06710.046*
Mo10.19711 (2)0.56897 (2)0.54612 (2)0.02158 (8)
Mo20.39657 (2)0.68604 (2)0.68548 (2)0.02263 (8)
Mo30.50488 (2)0.40073 (2)0.61961 (2)0.01958 (8)
Mo40.30016 (3)0.27733 (2)0.48179 (2)0.02400 (8)
N10.0993 (3)0.0933 (2)0.2815 (2)0.0324 (6)
N2−0.0148 (3)0.0536 (2)0.3381 (2)0.0381 (7)
H2A−0.10230.09530.35100.046*
N30.3455 (3)0.1258 (2)0.1639 (2)0.0305 (6)
N40.2540 (3)0.4845 (2)0.1601 (2)0.0366 (6)
H40.26720.49730.22850.044*
N50.1867 (3)0.4047 (2)0.1388 (2)0.0305 (6)
N60.0758 (3)0.2545 (2)0.0517 (2)0.0297 (6)
O10.2356 (2)0.7884 (2)0.7426 (2)0.0368 (5)
O20.4653 (2)0.64914 (19)0.80341 (19)0.0331 (5)
O30.33613 (19)0.53414 (17)0.67987 (16)0.0213 (4)
O40.32825 (19)0.67595 (16)0.51042 (17)0.0225 (4)
O50.0610 (2)0.65481 (19)0.65921 (19)0.0317 (5)
O60.1412 (2)0.5936 (2)0.42044 (19)0.0339 (5)
O70.17612 (19)0.41424 (17)0.58213 (17)0.0254 (4)
O80.41746 (19)0.44996 (16)0.44765 (16)0.0211 (4)
O90.4158 (2)0.28943 (18)0.62220 (17)0.0266 (5)
O100.5745 (2)0.37582 (19)0.73826 (18)0.0297 (5)
O110.4944 (2)0.21251 (17)0.39605 (18)0.0273 (5)
O120.2475 (2)0.1589 (2)0.5449 (2)0.0420 (6)
O130.2277 (2)0.3041 (2)0.36228 (19)0.0341 (5)
Zn10.13422 (4)0.25600 (3)0.21960 (3)0.02740 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.048 (2)0.044 (2)0.040 (2)−0.0261 (17)−0.0111 (17)0.0084 (16)
C20.046 (2)0.0324 (18)0.048 (2)−0.0101 (16)−0.0131 (17)0.0084 (16)
C30.0344 (17)0.0280 (16)0.0300 (17)−0.0041 (13)−0.0131 (14)0.0023 (13)
C40.0336 (17)0.0262 (16)0.0331 (18)−0.0012 (13)−0.0078 (14)−0.0032 (13)
C50.036 (2)0.040 (2)0.067 (3)0.0012 (16)−0.0104 (19)0.0034 (18)
C60.032 (2)0.059 (3)0.083 (3)−0.0005 (18)−0.012 (2)−0.009 (2)
C70.032 (2)0.060 (3)0.060 (3)−0.0160 (19)0.0035 (18)−0.014 (2)
C80.043 (2)0.0435 (19)0.0363 (19)−0.0196 (16)−0.0052 (16)−0.0066 (16)
C90.0412 (19)0.046 (2)0.042 (2)−0.0223 (16)−0.0122 (16)0.0092 (17)
C100.046 (2)0.047 (2)0.0305 (18)−0.0184 (17)−0.0050 (16)0.0082 (16)
C110.0260 (15)0.0356 (17)0.0223 (16)−0.0061 (13)−0.0043 (13)0.0060 (13)
C120.0264 (15)0.0320 (16)0.0208 (15)−0.0024 (13)−0.0029 (12)0.0010 (13)
C130.0412 (19)0.047 (2)0.0242 (17)−0.0114 (16)−0.0073 (15)0.0019 (15)
C140.044 (2)0.060 (2)0.0270 (18)−0.0108 (18)−0.0121 (16)−0.0042 (17)
C150.043 (2)0.057 (2)0.036 (2)−0.0182 (17)−0.0093 (16)−0.0108 (17)
C160.0377 (19)0.0397 (18)0.0362 (19)−0.0122 (15)−0.0060 (15)0.0000 (15)
Mo10.01351 (13)0.02965 (14)0.02125 (14)−0.00523 (10)−0.00454 (10)−0.00102 (11)
Mo20.01700 (13)0.02952 (14)0.02131 (14)−0.00717 (10)−0.00387 (10)−0.00267 (11)
Mo30.01706 (13)0.02553 (14)0.01692 (14)−0.00626 (10)−0.00557 (10)0.00432 (10)
Mo40.02013 (14)0.03132 (15)0.02320 (15)−0.01142 (11)−0.00577 (11)0.00101 (11)
N10.0256 (14)0.0352 (14)0.0321 (15)−0.0045 (11)−0.0044 (11)0.0072 (12)
N20.0281 (14)0.0484 (17)0.0360 (16)−0.0103 (13)−0.0057 (12)0.0060 (13)
N30.0287 (14)0.0313 (14)0.0297 (14)−0.0063 (11)−0.0065 (12)−0.0038 (11)
N40.0402 (16)0.0406 (16)0.0350 (16)−0.0123 (13)−0.0190 (13)0.0053 (13)
N50.0354 (15)0.0327 (14)0.0291 (14)−0.0136 (12)−0.0142 (12)0.0077 (11)
N60.0308 (14)0.0314 (13)0.0254 (14)−0.0067 (11)−0.0068 (11)−0.0008 (11)
O10.0228 (11)0.0454 (13)0.0374 (13)−0.0042 (10)−0.0043 (10)−0.0099 (11)
O20.0352 (12)0.0417 (13)0.0285 (12)−0.0151 (10)−0.0138 (10)−0.0011 (10)
O30.0159 (9)0.0299 (10)0.0185 (10)−0.0075 (8)−0.0037 (8)−0.0001 (8)
O40.0180 (10)0.0262 (10)0.0225 (10)−0.0049 (8)−0.0055 (8)0.0011 (8)
O50.0178 (10)0.0401 (12)0.0350 (13)−0.0079 (9)−0.0027 (9)−0.0080 (10)
O60.0283 (12)0.0461 (13)0.0326 (12)−0.0124 (10)−0.0151 (10)0.0049 (10)
O70.0188 (10)0.0348 (11)0.0227 (11)−0.0119 (9)−0.0010 (8)−0.0010 (9)
O80.0180 (10)0.0270 (10)0.0184 (10)−0.0067 (8)−0.0045 (8)0.0020 (8)
O90.0264 (11)0.0325 (11)0.0230 (11)−0.0107 (9)−0.0076 (9)0.0069 (9)
O100.0295 (11)0.0393 (12)0.0229 (11)−0.0090 (9)−0.0120 (9)0.0058 (9)
O110.0235 (11)0.0266 (10)0.0309 (12)−0.0083 (8)−0.0042 (9)0.0008 (9)
O120.0392 (13)0.0435 (14)0.0482 (15)−0.0243 (11)−0.0070 (11)0.0069 (11)
O130.0256 (11)0.0489 (13)0.0283 (12)−0.0060 (10)−0.0116 (10)−0.0073 (10)
Zn10.02716 (19)0.02776 (19)0.02265 (19)−0.00265 (14)−0.00377 (15)0.00391 (14)

Geometric parameters (Å, °)

C1—N21.337 (4)Mo1—O71.8795 (19)
C1—C21.359 (5)Mo1—O42.0000 (19)
C1—H10.9300Mo1—O82.2855 (18)
C2—C31.406 (4)Mo1—O32.3153 (18)
C2—H20.9300Mo2—O21.690 (2)
C3—N11.324 (4)Mo2—O11.706 (2)
C3—C41.459 (4)Mo2—O11i1.8892 (19)
C4—N31.348 (4)Mo2—O32.0089 (19)
C4—C51.375 (4)Mo2—O8i2.3154 (18)
C5—C61.384 (5)Mo2—O42.3248 (19)
C5—H50.9300Mo3—O101.6910 (19)
C6—C71.356 (6)Mo3—O91.747 (2)
C6—H60.9300Mo3—O31.9424 (18)
C7—C81.380 (5)Mo3—O4i1.9517 (19)
C7—H70.9300Mo3—O8i2.1294 (18)
C8—N31.337 (4)Mo3—O82.3886 (18)
C8—H80.9300Mo4—O121.682 (2)
C9—N41.334 (4)Mo4—O131.718 (2)
C9—C101.369 (5)Mo4—O111.8985 (19)
C9—H90.9300Mo4—O71.9139 (19)
C10—C111.389 (4)Mo4—O92.2644 (19)
C10—H100.9300N1—N21.354 (3)
C11—N51.336 (4)N2—H2A0.8600
C11—C121.470 (4)N4—N51.340 (3)
C12—N61.344 (4)N4—H40.8600
C12—C131.377 (4)O4—Mo3i1.9517 (19)
C13—C141.371 (5)O5—Zn1ii2.104 (2)
C13—H130.9300O8—Mo3i2.1294 (18)
C14—C151.382 (5)O8—Mo2i2.3154 (18)
C14—H140.9300O11—Mo2i1.8892 (19)
C15—C161.370 (5)Zn1—N12.081 (3)
C15—H150.9300Zn1—N32.196 (2)
C16—N61.342 (4)Zn1—N52.065 (2)
C16—H160.9300Zn1—N62.181 (2)
Mo1—O61.691 (2)Zn1—O5ii2.104 (2)
Mo1—O51.721 (2)Zn1—O132.252 (2)
N2—C1—C2107.6 (3)O8i—Mo2—O472.75 (6)
N2—C1—H1126.2O10—Mo3—O9104.53 (10)
C2—C1—H1126.2O10—Mo3—O3102.49 (9)
C1—C2—C3105.3 (3)O9—Mo3—O396.90 (9)
C1—C2—H2127.3O10—Mo3—O4i100.83 (9)
C3—C2—H2127.3O9—Mo3—O4i96.38 (9)
N1—C3—C2110.1 (3)O3—Mo3—O4i149.23 (8)
N1—C3—C4117.0 (3)O10—Mo3—O8i99.20 (9)
C2—C3—C4132.9 (3)O9—Mo3—O8i156.24 (8)
N3—C4—C5122.3 (3)O3—Mo3—O8i78.72 (7)
N3—C4—C3114.3 (3)O4i—Mo3—O8i77.97 (8)
C5—C4—C3123.4 (3)O10—Mo3—O8174.80 (9)
C4—C5—C6118.1 (4)O9—Mo3—O880.66 (7)
C4—C5—H5121.0O3—Mo3—O876.97 (7)
C6—C5—H5121.0O4i—Mo3—O877.98 (7)
C7—C6—C5119.9 (4)O8i—Mo3—O875.60 (8)
C7—C6—H6120.0O12—Mo4—O13104.85 (11)
C5—C6—H6120.0O12—Mo4—O11104.88 (10)
C6—C7—C8119.3 (4)O13—Mo4—O1198.55 (9)
C6—C7—H7120.3O12—Mo4—O7104.77 (10)
C8—C7—H7120.3O13—Mo4—O797.38 (9)
N3—C8—C7121.7 (3)O11—Mo4—O7141.25 (8)
N3—C8—H8119.2O12—Mo4—O991.45 (9)
C7—C8—H8119.2O13—Mo4—O9163.67 (9)
N4—C9—C10107.2 (3)O11—Mo4—O977.82 (8)
N4—C9—H9126.4O7—Mo4—O977.04 (8)
C10—C9—H9126.4C3—N1—N2105.8 (2)
C9—C10—C11105.1 (3)C3—N1—Zn1117.2 (2)
C9—C10—H10127.5N2—N1—Zn1136.5 (2)
C11—C10—H10127.5C1—N2—N1111.2 (3)
N5—C11—C10110.5 (3)C1—N2—H2A124.4
N5—C11—C12116.9 (3)N1—N2—H2A124.4
C10—C11—C12132.5 (3)C8—N3—C4118.6 (3)
N6—C12—C13122.7 (3)C8—N3—Zn1126.8 (2)
N6—C12—C11114.6 (3)C4—N3—Zn1113.3 (2)
C13—C12—C11122.6 (3)N5—N4—C9111.9 (3)
C14—C13—C12118.6 (3)N5—N4—H4124.1
C14—C13—H13120.7C9—N4—H4124.1
C12—C13—H13120.7C11—N5—N4105.3 (2)
C13—C14—C15119.2 (3)C11—N5—Zn1116.1 (2)
C13—C14—H14120.4N4—N5—Zn1136.35 (19)
C15—C14—H14120.4C12—N6—C16118.0 (3)
C14—C15—C16119.1 (3)C12—N6—Zn1113.7 (2)
C14—C15—H15120.4C16—N6—Zn1128.2 (2)
C16—C15—H15120.4Mo3—O3—Mo2108.99 (8)
N6—C16—C15122.3 (3)Mo3—O3—Mo1110.34 (8)
N6—C16—H16118.8Mo2—O3—Mo1104.40 (8)
C15—C16—H16118.8Mo3i—O4—Mo1108.87 (9)
O6—Mo1—O5105.92 (10)Mo3i—O4—Mo2109.70 (8)
O6—Mo1—O7102.36 (9)Mo1—O4—Mo2104.35 (8)
O5—Mo1—O7100.55 (9)Mo1—O5—Zn1ii167.30 (12)
O6—Mo1—O496.01 (9)Mo1—O7—Mo4119.86 (10)
O5—Mo1—O4100.20 (9)Mo3i—O8—Mo193.40 (7)
O7—Mo1—O4147.19 (8)Mo3i—O8—Mo2i92.63 (7)
O6—Mo1—O893.81 (9)Mo1—O8—Mo2i163.58 (9)
O5—Mo1—O8159.90 (8)Mo3i—O8—Mo3104.40 (8)
O7—Mo1—O878.43 (7)Mo1—O8—Mo397.00 (7)
O4—Mo1—O873.40 (7)Mo2i—O8—Mo396.26 (6)
O6—Mo1—O3163.48 (9)Mo3—O9—Mo4120.70 (9)
O5—Mo1—O387.50 (8)Mo2i—O11—Mo4120.57 (10)
O7—Mo1—O384.12 (7)Mo4—O13—Zn1155.18 (13)
O4—Mo1—O371.70 (7)N5—Zn1—N1172.65 (10)
O8—Mo1—O372.41 (7)N5—Zn1—O5ii98.46 (9)
O2—Mo2—O1105.26 (11)N1—Zn1—O5ii88.41 (9)
O2—Mo2—O11i102.35 (9)N5—Zn1—N676.74 (10)
O1—Mo2—O11i100.69 (10)N1—Zn1—N699.31 (10)
O2—Mo2—O394.91 (9)O5ii—Zn1—N6102.52 (9)
O1—Mo2—O3101.12 (10)N5—Zn1—N398.82 (10)
O11i—Mo2—O3147.40 (8)N1—Zn1—N375.45 (10)
O2—Mo2—O8i94.13 (9)O5ii—Zn1—N3155.52 (9)
O1—Mo2—O8i160.27 (9)N6—Zn1—N398.23 (9)
O11i—Mo2—O8i78.24 (7)N5—Zn1—O1384.54 (9)
O3—Mo2—O8i73.08 (7)N1—Zn1—O1398.92 (9)
O2—Mo2—O4163.06 (9)O5ii—Zn1—O1383.37 (8)
O1—Mo2—O487.52 (9)N6—Zn1—O13160.98 (9)
O11i—Mo2—O485.74 (8)N3—Zn1—O1381.16 (8)
O3—Mo2—O471.34 (7)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O1ii0.862.132.835 (3)139
N4—H4···O60.862.383.094 (4)141
N4—H4···O10i0.862.533.097 (3)124

Symmetry codes: (ii) −x, −y+1, −z+1; (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5511).

References

  • Artero, V. & Proust, A. (2000). Eur. J. Inorg. Chem. pp. 2393—2400.
  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lee, U., Joo, H.-C. & Cho, M.-A. (2002). Acta Cryst. E58, m599–m601.
  • Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed.30, 34–38.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography