PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2018.
Published online 2010 July 14. doi:  10.1107/S1600536810026905
PMCID: PMC3007578

2,3-Dibromo-1,3-bis­(4-fluoro­phen­yl)propan-1-one

Abstract

In the title compound, C15H10Br2F2O, the dihedral angle between the two 3-fluoro-substituted benzene rings is 5.7 (5)°. The two bromine substituents on the chalcone moiety are close to anti as the Br—C—C—Br torsion angle is 176.9 (7)°. Weak C—Br(...)π inter­actions may contribute to the crystal stability.

Related literature

For bromo substitution of non-linerar optical (NLO) compounds, see: Uchida et al. (1998 [triangle]); Tam et al. (1989 [triangle]); Indira et al. (2002 [triangle]). For NLO first-order hyperpolarizabilities, see: Zhao et al. (2002 [triangle]). For related structures, see: Narayana et al. (2007 [triangle]); Sarojini et al. (2007 [triangle]); Yathirajan et al. (2007 [triangle]); Butcher et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2018-scheme1.jpg

Experimental

Crystal data

  • C15H10Br2F2O
  • M r = 404.05
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2018-efi1.jpg
  • a = 5.7381 (13) Å
  • b = 9.909 (2) Å
  • c = 12.575 (3) Å
  • α = 75.324 (3)°
  • β = 87.472 (3)°
  • γ = 82.300 (3)°
  • V = 685.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 5.93 mm−1
  • T = 100 K
  • 0.55 × 0.30 × 0.25 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.329, T max = 0.746
  • 8841 measured reflections
  • 4008 independent reflections
  • 3408 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.079
  • S = 1.21
  • 4008 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 1.08 e Å−3
  • Δρmin = −0.87 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
YX(...)Cg inter­actions (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026905/tk2690sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026905/tk2690Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU. SS thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave.

supplementary crystallographic information

Comment

The non-linear optical (NLO) effect in organic molecules originates from a strong donor–acceptor intermolecular interaction, a delocalized π-electron system and the ability to crystallize in a non-centrosymmetric space group. Among several organic compounds exhibiting NLO effects, chalcone derivatives are important materials known for their excellent blue light transmittance and good crystallizability. It has been observed that substitution of a bromo group on either of the phenyl rings greatly influences non-centrosymmetric crystal packing (Uchida et al., 1998; Tam et al., 1989; Indira et al., 2002). Bromo substituents can obviously improve molecular first-order hyperpolarizabilities and can effectively reduce dipole–dipole interactions between molecules (Zhao et al., 2002). Chalcone derivatives usually have lower melting points, which can be a drawback when their crystals are used in optical instruments. Chalcone dibromides usually have higher melting points and are thermally stable.

The crystal structures of some dibromo chalcones viz., 2,3-dibromo- 3-(5-bromo-2-methoxyphenyl)-1-(2,4-dichlorophenyl)propan-1-one (Narayana et al., 2007), 2,3-dibromo-3-(4-bromo-6-methoxy-2 -naphthyl)-1-(4-methoxyphenyl)propan-1-one (Sarojini et al., 2007), 2,3-dibromo-1-(3-bromo-2-thienyl)-3-(4-fluorophenyl)propan-1-one, (Yathirajan et al., 2007), 2,3-dibromo-1-(4-methoxyphenyl)-3-[4- (methylsulfanyl)phenyl] propan-1-one, (Butcher et al., 2006) have been reported. In continuation of our studies on chalcones and their derivatives, the title chalcone dibromide, C15H10F2Br2O, was prepared by the bromination of the chalcone precursor, and its crystal structure is reported.

The title compound, C15H10F2Br2O, contains two m-fluoro-substituted rings attached to a brominated chalcone moiety. The dihedral angle between the mean planes of the benzene rings is 5.7 (5) °. The two bromine substituents on the chalcone moiety are nearly opposite to each orher [Br1–C8–C7–Br2 = 176.9 (7) °]. Weak C—Br···π interactions (Table 1) contribute to crystal stability.

Experimental

To a solution of (2E)-1,3-bis(4-fluorophenyl)prop-2-en-1-one (2.44 g, 0.01 mol) in acetic acid (25 ml), bromine (1.60 g, 0.01 mol) in acetic acid (10 ml) was added slowly with stirring at 273 K. After completion of the addition of the bromine solution, the reaction mixture was stirred for 5 h. The solid obtained was filtered and recrystallized from acetone. The crystals were grown from methanol by slow evaporation and the yield of the compound was 86%. (m.pt. 443 K). Analytical data: Found (Calculated): C %: 44.57 (44.59); H%: 2.48 (2.49).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.17–1.23Ueq(C).

Figures

Fig. 1.
Molecular structure of C15H10F2Br2O, showing the atom labeling scheme and 50% probability displacement ellipsoids.

Crystal data

C15H10Br2F2OZ = 2
Mr = 404.05F(000) = 392
Triclinic, P1Dx = 1.958 Mg m3
Hall symbol: -P 1Melting point: 443 K
a = 5.7381 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.909 (2) ÅCell parameters from 3859 reflections
c = 12.575 (3) Åθ = 2.4–31.2°
α = 75.324 (3)°µ = 5.93 mm1
β = 87.472 (3)°T = 100 K
γ = 82.300 (3)°Block, colourless
V = 685.4 (3) Å30.55 × 0.30 × 0.25 mm

Data collection

Bruker APEXII CCD diffractometer4008 independent reflections
Radiation source: fine-focus sealed tube3408 reflections with I > 2σ(I)
graphiteRint = 0.032
ω scansθmax = 31.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −8→8
Tmin = 0.329, Tmax = 0.746k = −14→14
8841 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.21w = 1/[σ2(Fo2) + (0.0334P)2] where P = (Fo2 + 2Fc2)/3
4008 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = −0.87 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.01364 (4)0.64928 (2)0.325242 (18)0.01732 (7)
Br30.63722 (4)0.41938 (2)0.166955 (18)0.01767 (7)
F30.2805 (3)0.01545 (14)0.61742 (12)0.0256 (3)
F4−0.1808 (3)0.97463 (15)−0.24671 (12)0.0269 (3)
O10.4729 (3)0.76521 (17)0.16467 (14)0.0197 (3)
C10.1701 (4)0.1693 (2)0.44729 (19)0.0198 (5)
H10.04910.11770.44210.024*
C20.3155 (4)0.1313 (2)0.53742 (19)0.0177 (5)
C30.4942 (4)0.2065 (2)0.5500 (2)0.0199 (5)
H30.58710.17970.61240.024*
C40.5301 (4)0.3239 (2)0.46579 (19)0.0189 (5)
H40.65030.37590.47160.023*
C50.3885 (4)0.3646 (2)0.37295 (18)0.0157 (4)
C60.2097 (4)0.2867 (2)0.36490 (19)0.0188 (5)
H60.11470.31360.30310.023*
C70.4417 (4)0.4886 (2)0.28267 (18)0.0152 (4)
H70.53130.54730.31310.018*
C24−0.1493 (4)0.7950 (2)−0.08429 (19)0.0180 (4)
H24−0.28410.7630−0.10190.022*
C25−0.0292 (4)0.7287 (2)0.01293 (18)0.0150 (4)
H25−0.08510.65200.06130.018*
C260.1738 (4)0.7767 (2)0.03802 (18)0.0133 (4)
C270.2560 (4)0.8922 (2)−0.03527 (18)0.0146 (4)
H270.39180.9243−0.01880.018*
C280.1387 (4)0.9599 (2)−0.13229 (19)0.0178 (5)
H280.19381.0366−0.18110.021*
C29−0.0623 (4)0.9097 (2)−0.15370 (18)0.0176 (5)
C300.3079 (4)0.7134 (2)0.14074 (18)0.0146 (4)
C310.2346 (4)0.5802 (2)0.22021 (18)0.0155 (4)
H310.15580.52660.18020.019*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.01593 (12)0.01512 (11)0.02036 (13)0.00004 (8)0.00191 (8)−0.00485 (8)
Br30.01936 (12)0.01393 (11)0.02088 (13)−0.00394 (8)0.00569 (9)−0.00655 (8)
F30.0373 (9)0.0182 (7)0.0176 (7)−0.0072 (6)0.0014 (6)0.0037 (5)
F40.0366 (9)0.0234 (7)0.0175 (7)0.0027 (6)−0.0117 (6)−0.0004 (6)
O10.0211 (8)0.0162 (7)0.0228 (9)−0.0080 (6)−0.0057 (7)−0.0027 (6)
C10.0231 (12)0.0161 (10)0.0205 (12)−0.0076 (9)0.0003 (9)−0.0027 (9)
C20.0228 (12)0.0128 (10)0.0153 (10)−0.0001 (8)0.0022 (8)−0.0009 (8)
C30.0228 (12)0.0180 (11)0.0171 (11)0.0004 (9)−0.0052 (9)−0.0015 (9)
C40.0208 (11)0.0172 (10)0.0193 (11)−0.0033 (8)−0.0035 (9)−0.0048 (9)
C50.0194 (11)0.0122 (9)0.0151 (10)−0.0018 (8)−0.0002 (8)−0.0026 (8)
C60.0220 (11)0.0165 (10)0.0168 (11)−0.0048 (8)−0.0046 (9)−0.0004 (8)
C70.0159 (10)0.0138 (9)0.0170 (11)−0.0023 (8)−0.0003 (8)−0.0057 (8)
C240.0165 (11)0.0177 (10)0.0213 (12)−0.0017 (8)−0.0026 (9)−0.0074 (9)
C250.0171 (10)0.0132 (9)0.0150 (10)−0.0036 (8)0.0010 (8)−0.0035 (8)
C260.0166 (10)0.0099 (9)0.0134 (10)−0.0002 (7)−0.0001 (8)−0.0036 (7)
C270.0164 (10)0.0107 (9)0.0181 (11)−0.0026 (8)0.0029 (8)−0.0061 (8)
C280.0257 (12)0.0111 (9)0.0150 (11)−0.0011 (8)0.0018 (9)−0.0013 (8)
C290.0234 (11)0.0145 (10)0.0134 (10)0.0061 (8)−0.0028 (8)−0.0046 (8)
C300.0170 (10)0.0110 (9)0.0163 (10)−0.0030 (8)−0.0011 (8)−0.0036 (8)
C310.0188 (11)0.0127 (9)0.0151 (10)−0.0041 (8)−0.0019 (8)−0.0022 (8)

Geometric parameters (Å, °)

Br1—C311.974 (2)C7—C311.511 (3)
Br3—C72.001 (2)C7—H70.9800
F3—C21.352 (2)C24—C291.383 (3)
F4—C291.347 (2)C24—C251.395 (3)
O1—C301.218 (3)C24—H240.9300
C1—C21.380 (3)C25—C261.392 (3)
C1—C61.384 (3)C25—H250.9300
C1—H10.9300C26—C271.398 (3)
C2—C31.383 (3)C26—C301.484 (3)
C3—C41.392 (3)C27—C281.389 (3)
C3—H30.9300C27—H270.9300
C4—C51.394 (3)C28—C291.378 (3)
C4—H40.9300C28—H280.9300
C5—C61.386 (3)C30—C311.537 (3)
C5—C71.502 (3)C31—H310.9800
C6—H60.9300
C2—C1—C6118.1 (2)C25—C24—H24120.9
C2—C1—H1121.0C24—C25—C26120.4 (2)
C6—C1—H1121.0C24—C25—H25119.8
F3—C2—C1118.4 (2)C26—C25—H25119.8
F3—C2—C3118.5 (2)C25—C26—C27119.3 (2)
C1—C2—C3123.0 (2)C25—C26—C30123.47 (19)
C2—C3—C4117.6 (2)C27—C26—C30117.3 (2)
C2—C3—H3121.2C28—C27—C26121.2 (2)
C4—C3—H3121.2C28—C27—H27119.4
C5—C4—C3120.9 (2)C26—C27—H27119.4
C5—C4—H4119.5C29—C28—C27117.7 (2)
C3—C4—H4119.5C29—C28—H28121.1
C6—C5—C4119.2 (2)C27—C28—H28121.1
C6—C5—C7122.1 (2)F4—C29—C28118.8 (2)
C4—C5—C7118.6 (2)F4—C29—C24118.0 (2)
C1—C6—C5121.1 (2)C28—C29—C24123.2 (2)
C1—C6—H6119.5O1—C30—C26121.82 (19)
C5—C6—H6119.5O1—C30—C31118.95 (19)
C5—C7—C31116.96 (19)C26—C30—C31119.22 (19)
C5—C7—Br3108.97 (15)C7—C31—C30111.97 (19)
C31—C7—Br3103.93 (16)C7—C31—Br1108.95 (16)
C5—C7—H7108.9C30—C31—Br1105.03 (14)
C31—C7—H7108.9C7—C31—H31110.3
Br3—C7—H7108.9C30—C31—H31110.3
C29—C24—C25118.2 (2)Br1—C31—H31110.3
C29—C24—H24120.9
C6—C1—C2—F3−178.9 (2)C30—C26—C27—C28−178.6 (2)
C6—C1—C2—C31.5 (4)C26—C27—C28—C290.3 (3)
F3—C2—C3—C4178.8 (2)C27—C28—C29—F4179.2 (2)
C1—C2—C3—C4−1.5 (4)C27—C28—C29—C24−0.9 (4)
C2—C3—C4—C50.8 (4)C25—C24—C29—F4−179.1 (2)
C3—C4—C5—C60.0 (4)C25—C24—C29—C281.1 (4)
C3—C4—C5—C7−177.5 (2)C25—C26—C30—O1−173.5 (2)
C2—C1—C6—C5−0.6 (4)C27—C26—C30—O15.2 (3)
C4—C5—C6—C1−0.1 (4)C25—C26—C30—C315.4 (3)
C7—C5—C6—C1177.4 (2)C27—C26—C30—C31−175.9 (2)
C6—C5—C7—C3136.4 (3)C5—C7—C31—C30172.58 (18)
C4—C5—C7—C31−146.1 (2)Br3—C7—C31—C30−67.3 (2)
C6—C5—C7—Br3−81.0 (2)C5—C7—C31—Br156.8 (2)
C4—C5—C7—Br396.5 (2)Br3—C7—C31—Br1176.97 (9)
C29—C24—C25—C26−0.6 (3)O1—C30—C31—C7−31.3 (3)
C24—C25—C26—C270.0 (3)C26—C30—C31—C7149.7 (2)
C24—C25—C26—C30178.7 (2)O1—C30—C31—Br186.8 (2)
C25—C26—C27—C280.1 (3)C26—C30—C31—Br1−92.2 (2)

Table 1 YX···Cg interactions (Å)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

YX···CgX···CgY···CgYX···Cg
C8—Br1···Cg1i3.650 (7)5.617 (2)174
C7—Br3···Cg2ii3.479 (6)5.341 (1)153

Symmetry codes: (i) -x, 1-y, 1-z ; (ii) 1-x, 1-y, -z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2690).

References

  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Mithun, A. (2006). Acta Cryst. E62, o1629–o1630.
  • Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.
  • Narayana, B., Mayekar, A. N., Yathirajan, H. S., Sarojini, B. K. & Kubicki, M. (2007). Acta Cryst. E63, o4362.
  • Sarojini, B. K., Narayana, B., Yathirajan, H. S., Mayekar, A. N. & Bolte, M. (2007). Acta Cryst. E63, o3755.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett.154, 93–96.
  • Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst.315, 135–140.
  • Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2198–o2199.
  • Zhao, B., Lu, W. Q., Zhou, Z. H. & Wu, Y. (2002). J. Mater. Chem.10, 1513–1517.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography