PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m888.
Published online 2010 July 7. doi:  10.1107/S1600536810025699
PMCID: PMC3007572

Diaqua­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N 1,N 4,N 8,N 11)copper(II) dideca­noate dihydrate

Abstract

The CuII atom in the title salt, [Cu(C10H24N4)(H2O)2][CH3(CH2)8CO2]2·2H2O, is chelated by the four N atoms of the 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam) ligand and is coordinated by two water mol­ecules in a Jahn–Teller-type tetra­gonally distorted octa­hedral geometry. The CuII atom lies on a center of inversion. The cations, anions and uncoordinated water mol­ecules are linked by N—H(...)O and O—H(...)O hydrogen bonds, forming a layer structure parallel to (001).

Related literature

For related (1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)copper carb­oxy­l­ates, see: Lindoy et al. (2003 [triangle]); Hunter et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m888-scheme1.jpg

Experimental

Crystal data

  • [Cu(C10H24N4)(H2O)2](C10H19O2)2·2H2O
  • M r = 678.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m888-efi1.jpg
  • a = 6.9820 (6) Å
  • b = 8.8006 (8) Å
  • c = 15.3291 (13) Å
  • α = 95.045 (1)°
  • β = 93.158 (1)°
  • γ = 98.423 (1)°
  • V = 925.93 (14) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.64 mm−1
  • T = 100 K
  • 0.30 × 0.20 × 0.02 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.832, T max = 0.987
  • 8967 measured reflections
  • 4230 independent reflections
  • 3736 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.086
  • S = 1.06
  • 4230 reflections
  • 220 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025699/bt5286sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025699/bt5286Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya (RG039/09SUS) and the Ministry of Higher Education (FP017/2009) for for supporting this study.

supplementary crystallographic information

Comment

The copper(II) ion forms a number of complexes with 1,4,8,11-tetraazacyclotetradecane in which the metal atom is coordinated by the four amino donor-atoms of the cyclic ligand. Among the carboxylate derivatives, neither the acetate nor the benzoate ions bind directly with the copper atom. The copper atom is coordinated instead by water molecules so that the carboxylate group interacts indirectly with the metal atom through the coordinated water molecules (Hunter et al., 2005; Lindoy et al., 2003). The copper(II) atom in the salt, [Cu(H2O)2(C10H24N4)]2+ 2[CH3(CH2)8CO2]-.2H2O (Scheme I), is chelated by the four nitrogen atoms of the cyclam ligand and is coordinated by two water molecules in a Jahn-Teller type of tetragonally distorted octahedral geometry. The copper atom lies on a center of inversion (Fig. 1). The cations, anions and lattice water molecules are linked by N–H···O and O–H···O hydrogen bonds to form a layer structure.

Experimental

1,4,8,11-Tetraazacyclotetradecane (0.50 g, 2.50 mmol) dissolved in ethanol (25 ml) was mixed with a suspension of copper decanoate (1.01.80 g, 2.5 mmol) in ethanol (50 ml) to give a purple solution. The solution was heated for an hour and then filtered. Prismatic crystals separated from the solution when it was left to cool slowly.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The amino and water H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.86±0.01, O–H 0.84±0.01 Å; their displacement parameters were freely refined.

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of [Cu(H2O)2(C10H24N4)]2+ 2[CH3(CH2)8CO2]-.2H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Cu(C10H24N4)(H2O)2](C10H19O2)2·2H2OZ = 1
Mr = 678.44F(000) = 371
Triclinic, P1Dx = 1.217 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9820 (6) ÅCell parameters from 3079 reflections
b = 8.8006 (8) Åθ = 2.4–28.1°
c = 15.3291 (13) ŵ = 0.64 mm1
α = 95.045 (1)°T = 100 K
β = 93.158 (1)°Plate, purple
γ = 98.423 (1)°0.30 × 0.20 × 0.02 mm
V = 925.93 (14) Å3

Data collection

Bruker SMART APEX diffractometer4230 independent reflections
Radiation source: fine-focus sealed tube3736 reflections with I > 2σ(I)
graphiteRint = 0.034
ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.832, Tmax = 0.987k = −11→11
8967 measured reflectionsl = −19→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0348P)2 + 0.1911P] where P = (Fo2 + 2Fc2)/3
4230 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.33 e Å3
6 restraintsΔρmin = −0.43 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.50000.50000.01105 (9)
O10.9257 (2)0.05590 (14)0.38643 (8)0.0242 (3)
O20.93155 (17)0.28063 (13)0.33012 (8)0.0179 (3)
O1W0.81745 (18)0.48550 (14)0.57137 (9)0.0204 (3)
H110.900 (3)0.555 (2)0.5970 (13)0.035 (6)*
H120.870 (3)0.4065 (17)0.5704 (15)0.037 (7)*
O2W0.95494 (18)0.20230 (14)0.54959 (9)0.0185 (3)
H210.945 (3)0.160 (2)0.4983 (8)0.040 (7)*
H220.982 (3)0.1320 (19)0.5783 (13)0.029 (6)*
N10.55275 (19)0.35212 (15)0.39806 (9)0.0135 (3)
H10.6723 (15)0.342 (2)0.4045 (12)0.022 (5)*
N20.6209 (2)0.68731 (15)0.44674 (9)0.0130 (3)
H20.7437 (14)0.692 (2)0.4559 (12)0.017 (5)*
C10.5260 (3)0.4008 (2)0.30884 (11)0.0184 (4)
H1A0.38790.41040.29630.022*
H1B0.56020.32110.26530.022*
C20.6516 (3)0.5543 (2)0.29990 (11)0.0200 (4)
H2A0.65090.57220.23700.024*
H2B0.78690.54800.32050.024*
C30.5859 (3)0.6912 (2)0.35105 (11)0.0186 (4)
H3A0.65700.78810.33320.022*
H3B0.44570.69020.33670.022*
C40.5625 (2)0.82300 (18)0.49625 (12)0.0179 (4)
H4A0.42970.83610.47540.021*
H4B0.65220.91740.48710.021*
C50.5685 (2)0.79793 (18)0.59202 (12)0.0181 (4)
H5A0.70390.79670.61450.022*
H5B0.51780.88260.62590.022*
C60.9049 (2)0.13621 (18)0.32350 (11)0.0137 (3)
C70.8332 (3)0.04950 (19)0.23452 (11)0.0172 (4)
H7A0.68950.03110.23090.021*
H7B0.8776−0.05250.23130.021*
C80.8998 (2)0.1307 (2)0.15509 (11)0.0177 (4)
H8A0.82650.07600.10150.021*
H8B0.86900.23720.16130.021*
C91.1168 (2)0.1371 (2)0.14399 (12)0.0194 (4)
H9A1.19020.20060.19490.023*
H9B1.14990.03140.14370.023*
C101.1795 (2)0.2040 (2)0.06012 (11)0.0189 (4)
H10A1.14260.30840.05980.023*
H10B1.10780.13890.00930.023*
C111.3965 (3)0.2155 (2)0.04841 (12)0.0204 (4)
H11A1.46840.28660.09680.024*
H11B1.43560.11250.05250.024*
C121.4536 (2)0.2727 (2)−0.03877 (11)0.0188 (4)
H12A1.40840.3732−0.04390.023*
H12B1.38570.1989−0.08700.023*
C131.6711 (3)0.2921 (2)−0.05047 (11)0.0196 (4)
H13A1.73940.3678−0.00320.024*
H13B1.71740.1922−0.04440.024*
C141.7228 (3)0.3460 (2)−0.13872 (12)0.0253 (4)
H14A1.67230.4440−0.14540.030*
H14B1.65700.2685−0.18570.030*
C151.9396 (3)0.3709 (3)−0.15119 (14)0.0329 (5)
H15A1.96170.4047−0.20950.049*
H15B1.99080.2740−0.14580.049*
H15C2.00580.4501−0.10620.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01256 (15)0.00841 (14)0.01241 (16)0.00162 (10)0.00342 (11)0.00065 (10)
O10.0374 (8)0.0185 (6)0.0167 (7)0.0035 (5)−0.0007 (6)0.0043 (5)
O20.0220 (6)0.0131 (5)0.0184 (6)0.0051 (5)−0.0005 (5)−0.0012 (5)
O1W0.0139 (6)0.0158 (6)0.0306 (8)0.0045 (5)−0.0032 (5)−0.0027 (5)
O2W0.0200 (6)0.0159 (6)0.0200 (7)0.0046 (5)0.0001 (5)0.0010 (5)
N10.0089 (7)0.0154 (7)0.0157 (7)0.0023 (5)0.0020 (6)−0.0020 (5)
N20.0096 (7)0.0127 (6)0.0176 (7)0.0030 (5)0.0031 (6)0.0028 (5)
C10.0170 (9)0.0250 (9)0.0133 (9)0.0061 (7)0.0014 (7)−0.0026 (7)
C20.0177 (9)0.0310 (10)0.0133 (9)0.0062 (7)0.0045 (7)0.0074 (7)
C30.0170 (9)0.0211 (8)0.0193 (9)0.0037 (7)0.0017 (7)0.0098 (7)
C40.0144 (8)0.0085 (7)0.0312 (10)0.0019 (6)0.0050 (7)0.0014 (7)
C50.0148 (8)0.0109 (7)0.0270 (10)0.0001 (6)0.0039 (7)−0.0052 (7)
C60.0098 (8)0.0163 (8)0.0155 (9)0.0034 (6)0.0040 (6)−0.0002 (6)
C70.0184 (9)0.0157 (8)0.0163 (9)−0.0006 (6)0.0040 (7)−0.0016 (7)
C80.0179 (9)0.0211 (8)0.0133 (8)0.0003 (7)0.0030 (7)−0.0002 (7)
C90.0176 (9)0.0240 (9)0.0168 (9)0.0027 (7)0.0032 (7)0.0017 (7)
C100.0174 (9)0.0234 (9)0.0156 (9)0.0009 (7)0.0036 (7)0.0024 (7)
C110.0192 (9)0.0259 (9)0.0162 (9)0.0025 (7)0.0054 (7)0.0021 (7)
C120.0165 (9)0.0242 (9)0.0150 (9)0.0003 (7)0.0031 (7)0.0018 (7)
C130.0186 (9)0.0250 (9)0.0154 (9)0.0024 (7)0.0033 (7)0.0027 (7)
C140.0210 (10)0.0367 (11)0.0182 (10)0.0012 (8)0.0044 (7)0.0071 (8)
C150.0250 (10)0.0443 (12)0.0316 (12)0.0039 (9)0.0138 (9)0.0104 (9)

Geometric parameters (Å, °)

Cu1—N12.029 (1)C5—H5B0.9900
Cu1—N1i2.029 (1)C6—C71.524 (2)
Cu1—N22.000 (1)C7—C81.526 (2)
Cu1—N2i2.000 (1)C7—H7A0.9900
Cu1—O1w2.443 (1)C7—H7B0.9900
O1—C61.259 (2)C8—C91.527 (2)
O2—C61.2515 (19)C8—H8A0.9900
O1W—H110.832 (10)C8—H8B0.9900
O1W—H120.831 (9)C9—C101.520 (2)
O2W—H210.834 (9)C9—H9A0.9900
O2W—H220.828 (9)C9—H9B0.9900
N1—C11.479 (2)C10—C111.525 (2)
N1—C5i1.485 (2)C10—H10A0.9900
N1—H10.855 (9)C10—H10B0.9900
N2—C31.478 (2)C11—C121.522 (2)
N2—C41.478 (2)C11—H11A0.9900
N2—H20.854 (9)C11—H11B0.9900
C1—C21.520 (2)C12—C131.525 (2)
C1—H1A0.9900C12—H12A0.9900
C1—H1B0.9900C12—H12B0.9900
C2—C31.521 (2)C13—C141.517 (2)
C2—H2A0.9900C13—H13A0.9900
C2—H2B0.9900C13—H13B0.9900
C3—H3A0.9900C14—C151.522 (3)
C3—H3B0.9900C14—H14A0.9900
C4—C51.503 (3)C14—H14B0.9900
C4—H4A0.9900C15—H15A0.9800
C4—H4B0.9900C15—H15B0.9800
C5—N1i1.485 (2)C15—H15C0.9800
C5—H5A0.9900
N2—Cu1—N2i180.000 (1)O2—C6—C7118.55 (15)
N2—Cu1—N193.73 (6)O1—C6—C7116.87 (14)
N2i—Cu1—N186.27 (6)C6—C7—C8115.27 (13)
N2—Cu1—N1i86.27 (6)C6—C7—H7A108.5
N2i—Cu1—N1i93.73 (6)C8—C7—H7A108.5
N1—Cu1—N1i180.00 (5)C6—C7—H7B108.5
N2—Cu1—O1W88.48 (5)C8—C7—H7B108.5
N2i—Cu1—O1W91.52 (5)H7A—C7—H7B107.5
N1—Cu1—O1W90.25 (5)C9—C8—C7113.07 (15)
N1i—Cu1—O1W89.75 (5)C9—C8—H8A109.0
Cu1—O1W—H11130.2 (16)C7—C8—H8A109.0
Cu1—O1W—H12124.9 (16)C9—C8—H8B109.0
H11—O1W—H12105 (2)C7—C8—H8B109.0
H21—O2W—H22102 (2)H8A—C8—H8B107.8
C1—N1—C5i112.07 (13)C10—C9—C8113.02 (15)
C1—N1—Cu1117.07 (10)C10—C9—H9A109.0
C5i—N1—Cu1106.17 (10)C8—C9—H9A109.0
C1—N1—H1105.4 (13)C10—C9—H9B109.0
C5i—N1—H1108.8 (13)C8—C9—H9B109.0
Cu1—N1—H1107.0 (13)H9A—C9—H9B107.8
C3—N2—C4111.44 (13)C9—C10—C11114.15 (15)
C3—N2—Cu1117.71 (10)C9—C10—H10A108.7
C4—N2—Cu1107.26 (10)C11—C10—H10A108.7
C3—N2—H2105.7 (13)C9—C10—H10B108.7
C4—N2—H2107.8 (13)C11—C10—H10B108.7
Cu1—N2—H2106.5 (13)H10A—C10—H10B107.6
N1—C1—C2111.30 (14)C12—C11—C10113.15 (15)
N1—C1—H1A109.4C12—C11—H11A108.9
C2—C1—H1A109.4C10—C11—H11A108.9
N1—C1—H1B109.4C12—C11—H11B108.9
C2—C1—H1B109.4C10—C11—H11B108.9
H1A—C1—H1B108.0H11A—C11—H11B107.8
C1—C2—C3113.84 (14)C11—C12—C13114.24 (15)
C1—C2—H2A108.8C11—C12—H12A108.7
C3—C2—H2A108.8C13—C12—H12A108.7
C1—C2—H2B108.8C11—C12—H12B108.7
C3—C2—H2B108.8C13—C12—H12B108.7
H2A—C2—H2B107.7H12A—C12—H12B107.6
N2—C3—C2111.53 (13)C14—C13—C12112.92 (15)
N2—C3—H3A109.3C14—C13—H13A109.0
C2—C3—H3A109.3C12—C13—H13A109.0
N2—C3—H3B109.3C14—C13—H13B109.0
C2—C3—H3B109.3C12—C13—H13B109.0
H3A—C3—H3B108.0H13A—C13—H13B107.8
N2—C4—C5108.50 (13)C13—C14—C15114.09 (16)
N2—C4—H4A110.0C13—C14—H14A108.7
C5—C4—H4A110.0C15—C14—H14A108.7
N2—C4—H4B110.0C13—C14—H14B108.7
C5—C4—H4B110.0C15—C14—H14B108.7
H4A—C4—H4B108.4H14A—C14—H14B107.6
N1i—C5—C4108.31 (13)C14—C15—H15A109.5
N1i—C5—H5A110.0C14—C15—H15B109.5
C4—C5—H5A110.0H15A—C15—H15B109.5
N1i—C5—H5B110.0C14—C15—H15C109.5
C4—C5—H5B110.0H15A—C15—H15C109.5
H5A—C5—H5B108.4H15B—C15—H15C109.5
O2—C6—O1124.52 (15)
N2—Cu1—N1—C1−39.47 (12)C4—N2—C3—C2178.27 (13)
N2i—Cu1—N1—C1140.53 (12)Cu1—N2—C3—C2−57.23 (16)
O1W—Cu1—N1—C1−127.96 (11)C1—C2—C3—N270.00 (18)
N2—Cu1—N1—C5i−165.46 (11)C3—N2—C4—C5170.11 (13)
N2i—Cu1—N1—C5i14.54 (11)Cu1—N2—C4—C539.93 (15)
O1W—Cu1—N1—C5i106.05 (11)N2—C4—C5—N1i−54.24 (17)
N1—Cu1—N2—C339.47 (12)O2—C6—C7—C831.5 (2)
N1i—Cu1—N2—C3−140.53 (12)O1—C6—C7—C8−151.30 (16)
O1W—Cu1—N2—C3129.61 (11)C6—C7—C8—C969.42 (19)
N1—Cu1—N2—C4166.02 (11)C7—C8—C9—C10174.47 (14)
N1i—Cu1—N2—C4−13.98 (11)C8—C9—C10—C11178.58 (14)
O1W—Cu1—N2—C4−103.84 (10)C9—C10—C11—C12176.14 (14)
C5i—N1—C1—C2−179.84 (13)C10—C11—C12—C13177.40 (14)
Cu1—N1—C1—C257.16 (16)C11—C12—C13—C14178.81 (15)
N1—C1—C2—C3−70.19 (19)C12—C13—C14—C15178.29 (16)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.86 (1)2.30 (1)3.025 (2)144 (2)
N2—H2···O2wii0.85 (1)2.18 (1)2.974 (2)154 (2)
O1w—H11···O2ii0.83 (1)1.95 (1)2.774 (2)172 (2)
O1w—H12···O2w0.83 (1)1.98 (1)2.799 (2)169 (2)
O2w—H21···O10.83 (1)1.86 (1)2.694 (2)177 (2)
O2w—H22···O1iii0.83 (1)1.97 (1)2.771 (2)163 (2)

Symmetry codes: (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5286).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hunter, T. M., McNae, I. W., Liang, X., Bella, J., Parsons, S., Walkinshaw, M. D. & Sadler, P. J. (2005). Proc. Natl Acad. Sci. USA, 102, 2288–2292. [PubMed]
  • Lindoy, L. F., Mahinay, M. S., Skelton, B. W. & White, A. H. (2003). J. Coord. Chem.56, 1203–1213.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920-925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography