PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m975.
Published online 2010 July 21. doi:  10.1107/S1600536810027819
PMCID: PMC3007569

Chlorido[1-(2-eth­oxy­phen­yl)3-(4-nitro­phen­yl)triazenido]mercury(II)

Abstract

In the title compound, [Hg(C14H13N4O3)Cl], the HgII atom is four-coordinated by one O atom and two N atoms from a tridentate 1-(2-eth­oxy­phen­yl)-3-(4-nitro­phen­yl)triazenide ligand and one terminal chloride ion in a distorted square-planar geometry. In the crystal structure, the mononuclear complexes are linked into pairs through C—H(...)O and C—H(...)Cl hydrogen bonds as well as π–π and C—H(...)π stacking inter­actions. In addition, weak Hg–μ6-arene π-inter­actions [mean distance of 3.667 (2) Å] are present between these dimers. The π–π stacking inter­actions are between aromatic rings with a centroid–centroid distance of 3.884 (2) Å. Moreover, edge-to-face inter­actions are present between eth­oxy CH groups and aromatic rings with H(...)π distances of 2.81 Å.

Related literature

For transition-metal complexes containing 1,3-diaryltriazenide ligands, see: Moore & Robinson (1986 [triangle]); Vrieze & Van Koten, (1987 [triangle]); Horner et al. (2006 [triangle]). For related structures, see: Melardi et al. (2007 [triangle], 2009 [triangle]); Rofouei et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m975-scheme1.jpg

Experimental

Crystal data

  • [Hg(C14H13N4O3)Cl]
  • M r = 521.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m975-efi1.jpg
  • a = 13.4829 (5) Å
  • b = 15.5746 (6) Å
  • c = 7.7545 (3) Å
  • β = 107.6355 (6)°
  • V = 1551.84 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 10.11 mm−1
  • T = 120 K
  • 0.44 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.142, T max = 0.618
  • 11603 measured reflections
  • 5612 independent reflections
  • 5130 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.047
  • S = 0.76
  • 5612 reflections
  • 209 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.87 e Å−3
  • Δρmin = −0.73 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2739 Friedel pairs
  • Flack parameter: 0.003 (5)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810027819/pv2293sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027819/pv2293Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Triazene compounds characterized by having a diazoamino group (–N═NN–) commonly adopt a trans configuration in the ground state. The study of transition-metal complexes containing 1,3-diaryltriaznide ligands has greatly increased in the past few years because of the versatility of their coordination forms, yielding a variety of coordination compounds with large structural diversity (Moore & Robinson, 1986; Vrieze & Van Koten, 1987; Horner et al.., 2006). The crystal structures of a few complexes related to the title compound have been reported recently (Melardi et al., 2007; Rofouei et al., 2009).

In the title complex (Fig. 1), the [1-(2-ethoxyphenyl)3-(4-nitrophenyl)]triazenide ion is coordinated to the central atom Hg(II) through two N atoms [Hg1—N1 = 2.070 (3) Å and Hg1—N3 = 2.711 (3) Å] and one O atom [Hg1—O1 = 2.662 (2) Å]. In addition, a Cl- ion is coordinated to Hg(II) atom with the bond distance Hg1—Cl1 = 2.269 (9) Å. These bond distances agree very well with the corresponding distances reported in related structures (Melardi et al., 2007; Rofouei et al., 2009). The atoms of the ligand and lie in a plane (maximum deviation from coplanarity being 0.115 (4)Å for O2 while Cl1 and Hg1 lie 1.402 (3) and 0.606 (2)Å, respecively, out of this plane. The molecules of the title complex are linked to form pairs through non-classical C—H···O and C—H···Cl hydrogen bond, as well as π–π and C—H···π stacking interactions.

There are π–π stacking interactions present between aromatic rings with centroid-centroid distance of 3.884 (2) Å for Cg1···Cg1 (Cg1 = C7—C12, x, 1 - y, z-1/2), and also edge-to-face interactions are present between CH group of ethoxy with aromatic rings with H···π distance of 2.81 Å for C13—H13B···Cg2 (Cg2 = C1—C6 x, 1 - y, z-1/2). In addition, weak Hg-µ6-arene π-interactions (mean distance 3.667 (2) Å) are present between these dimers. The secondary Hg-µ6-arene π-interactions involve carbon atoms of the C1—C6 phenyl rings (Table 1, Fig. 2). The weak non-covalent interactions seem to play important role in the crystal packing and the formation of a desired framework. The unit cell packing of the title compound is shown in Fig. 3.

Experimental

A methanol solution of 1-(2-ethoxyphenyl)-3-(4-nitrophenyl)triazene (0.286 g, 1 mmol) was added to a solution of mercury(II) chloride (0.270 g, 1 mmol). After mixing for 30 minutes at room temperature, solution of sodium acetate in water was added to adjust the pH at 6–6.2. After 2 h, a red solid was readily precipitated out. It was filtered off, washed with methanol and dried in vacuum. The orange crude material was dissolved in 10 ml of dichloromethane (CH2Cl2), and placed in a freezer without covering. After two weeks beautiful orange and air-stable crystals of the title complex were obtained by slow evaporation of the solvent; m.p. 460–462 K.

Refinement

An absolute structure was established using Flack (1983) method. The H-atoms were placed in calculated positions with C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene type H-atoms, respectively, and included in the refinement in riding mode with fixed isotropic displacement parameters (Uiso(H) = 1.5Ueq(C) for the CH3-groups and Uiso(H) = 1.2Ueq(C) for the other groups). The highest positive residual electron density peak of 0.87 eÅ3 was localized at a distance of 0.91 Å from the Hg1 atom and was meaningless.

Figures

Fig. 1.
Molecular structure of the title compound, with ellipsoids drawn at 50% probability level.
Fig. 2.
π–π, C—H···π and weak Hg-µ6-arene stacking interactions between two [Hg(C14H13N4O3)Cl] moieties.
Fig. 3.
The unit cell packing diagram of the title compound along the c axis.

Crystal data

[Hg(C14H13N4O3)Cl]F(000) = 984
Mr = 521.32Dx = 2.231 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5899 reflections
a = 13.4829 (5) Åθ = 2.6–32.6°
b = 15.5746 (6) ŵ = 10.11 mm1
c = 7.7545 (3) ÅT = 120 K
β = 107.6355 (6)°Needle, red
V = 1551.84 (10) Å30.44 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer5612 independent reflections
Radiation source: fine-focus sealed tube5130 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 32.8°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −20→20
Tmin = 0.142, Tmax = 0.618k = −23→23
11603 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.047w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3
S = 0.76(Δ/σ)max = 0.002
5612 reflectionsΔρmax = 0.87 e Å3
209 parametersΔρmin = −0.73 e Å3
2 restraintsAbsolute structure: Flack (1983), 2739 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.003 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Hg10.12017 (2)0.366861 (6)0.01531 (2)0.01598 (3)
Cl10.09959 (7)0.22761 (6)−0.07489 (13)0.02390 (18)
O10.29846 (19)0.43726 (16)0.0064 (3)0.0186 (5)
O2−0.3935 (2)0.61872 (18)0.3415 (5)0.0284 (6)
O3−0.4252 (2)0.48304 (18)0.3448 (4)0.0251 (6)
N10.1308 (2)0.49607 (17)0.0809 (4)0.0139 (5)
N20.0536 (2)0.52465 (18)0.1369 (4)0.0143 (5)
N3−0.0072 (2)0.46291 (18)0.1493 (4)0.0135 (5)
N4−0.3717 (2)0.5440 (2)0.3237 (4)0.0178 (6)
C10.1976 (2)0.5559 (2)0.0397 (4)0.0141 (6)
C20.2875 (3)0.5247 (2)0.0013 (4)0.0158 (6)
C30.3560 (3)0.5818 (2)−0.0381 (5)0.0207 (7)
H30.41690.5612−0.06200.025*
C40.3359 (3)0.6695 (3)−0.0427 (5)0.0240 (8)
H40.38400.7086−0.06750.029*
C50.2464 (3)0.7004 (2)−0.0112 (5)0.0240 (7)
H50.23260.7604−0.01690.029*
C60.1767 (3)0.6436 (2)0.0287 (5)0.0177 (6)
H60.11490.66460.04840.021*
C7−0.0947 (2)0.4891 (2)0.1988 (4)0.0126 (6)
C8−0.1560 (3)0.4226 (2)0.2309 (5)0.0162 (6)
H8−0.13480.36470.22520.019*
C9−0.2472 (3)0.4396 (2)0.2710 (5)0.0169 (6)
H9−0.28880.39430.29310.020*
C10−0.2762 (3)0.5245 (2)0.2780 (5)0.0158 (6)
C11−0.2170 (3)0.5921 (2)0.2465 (5)0.0155 (6)
H11−0.23850.64980.25310.019*
C12−0.1261 (3)0.5744 (2)0.2052 (5)0.0155 (6)
H12−0.08530.62000.18130.019*
C130.3904 (3)0.4016 (3)−0.0273 (5)0.0206 (7)
H13A0.45410.42280.06410.025*
H13B0.39300.4188−0.14870.025*
C140.3835 (3)0.3054 (2)−0.0161 (6)0.0251 (8)
H14A0.44500.2792−0.03680.038*
H14B0.32070.2851−0.10830.038*
H14C0.38020.28910.10420.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.01404 (5)0.01342 (4)0.02179 (5)0.00069 (9)0.00741 (3)−0.00111 (10)
Cl10.0207 (4)0.0148 (4)0.0376 (5)0.0004 (3)0.0109 (4)−0.0046 (3)
O10.0137 (11)0.0211 (12)0.0250 (13)0.0020 (9)0.0117 (10)−0.0003 (10)
O20.0230 (14)0.0235 (14)0.0441 (18)0.0042 (11)0.0182 (13)0.0018 (12)
O30.0175 (13)0.0306 (15)0.0307 (15)−0.0056 (11)0.0127 (12)−0.0014 (12)
N10.0124 (12)0.0148 (12)0.0164 (12)−0.0001 (10)0.0070 (11)−0.0015 (10)
N20.0123 (12)0.0168 (13)0.0144 (13)−0.0011 (10)0.0048 (10)0.0009 (10)
N30.0111 (12)0.0162 (13)0.0133 (12)0.0012 (10)0.0040 (10)0.0011 (10)
N40.0134 (13)0.0239 (15)0.0179 (14)−0.0031 (11)0.0074 (11)−0.0009 (11)
C10.0115 (14)0.0188 (15)0.0127 (14)−0.0012 (11)0.0048 (11)−0.0004 (12)
C20.0161 (15)0.0196 (16)0.0132 (14)0.0017 (12)0.0067 (12)0.0004 (12)
C30.0151 (15)0.0282 (19)0.0209 (17)−0.0013 (13)0.0088 (13)−0.0001 (14)
C40.0261 (19)0.0242 (18)0.0256 (18)−0.0077 (15)0.0134 (16)0.0024 (15)
C50.0248 (19)0.0191 (17)0.0308 (19)−0.0043 (14)0.0123 (16)0.0012 (15)
C60.0188 (16)0.0169 (15)0.0203 (16)0.0005 (12)0.0100 (13)−0.0003 (12)
C70.0103 (13)0.0176 (15)0.0103 (13)0.0016 (11)0.0037 (11)0.0007 (11)
C80.0168 (15)0.0148 (14)0.0180 (15)−0.0013 (12)0.0067 (12)−0.0005 (12)
C90.0163 (15)0.0197 (16)0.0157 (15)−0.0036 (12)0.0065 (12)−0.0010 (12)
C100.0138 (15)0.0221 (16)0.0135 (14)−0.0028 (12)0.0070 (13)−0.0010 (12)
C110.0129 (14)0.0161 (15)0.0181 (15)0.0012 (12)0.0055 (12)−0.0014 (12)
C120.0142 (15)0.0144 (14)0.0180 (15)−0.0023 (11)0.0053 (12)0.0004 (12)
C130.0144 (15)0.0272 (18)0.0211 (16)0.0060 (14)0.0069 (13)−0.0027 (15)
C140.0222 (18)0.0262 (19)0.0289 (19)0.0072 (15)0.0107 (16)−0.0008 (15)

Geometric parameters (Å, °)

Hg1—N12.070 (3)C5—C61.392 (5)
Hg1—Cl12.2699 (9)C5—H50.9500
Hg1—O12.662 (2)C6—H60.9500
Hg1—N32.711 (3)C7—C81.394 (4)
O1—C21.370 (4)C7—C121.401 (5)
O1—C131.453 (4)C8—C91.382 (5)
O2—N41.218 (4)C8—H80.9500
O3—N41.233 (4)C9—C101.385 (5)
N1—N21.320 (4)C9—H90.9500
N1—C11.399 (4)C10—C111.387 (5)
N2—N31.286 (4)C11—C121.385 (5)
N3—C71.406 (4)C11—H110.9500
N4—C101.467 (4)C12—H120.9500
C1—C61.392 (4)C13—C141.505 (6)
C1—C21.419 (4)C13—H13A0.9900
C2—C31.382 (5)C13—H13B0.9900
C3—C41.390 (6)C14—H14A0.9800
C3—H30.9500C14—H14B0.9800
C4—C51.389 (6)C14—H14C0.9800
C4—H40.9500
N1—Hg1—Cl1175.95 (8)C1—C6—C5120.0 (3)
N1—Hg1—O167.07 (9)C1—C6—H6120.0
Cl1—Hg1—O1114.37 (6)C5—C6—H6120.0
N1—Hg1—N351.23 (10)C8—C7—C12119.8 (3)
Cl1—Hg1—N3127.80 (6)C8—C7—N3115.2 (3)
O1—Hg1—N3117.69 (8)C12—C7—N3124.9 (3)
C2—O1—C13117.8 (3)C9—C8—C7120.9 (3)
C2—O1—Hg1108.66 (19)C9—C8—H8119.5
C13—O1—Hg1132.3 (2)C7—C8—H8119.5
N2—N1—C1118.5 (3)C8—C9—C10118.3 (3)
N2—N1—Hg1114.0 (2)C8—C9—H9120.9
C1—N1—Hg1126.3 (2)C10—C9—H9120.9
N3—N2—N1110.9 (3)C9—C10—C11122.2 (3)
N2—N3—C7114.2 (3)C9—C10—N4119.1 (3)
N2—N3—Hg183.78 (18)C11—C10—N4118.7 (3)
C7—N3—Hg1161.0 (2)C12—C11—C10119.1 (3)
O2—N4—O3123.4 (3)C12—C11—H11120.4
O2—N4—C10119.0 (3)C10—C11—H11120.4
O3—N4—C10117.6 (3)C11—C12—C7119.7 (3)
C6—C1—N1122.4 (3)C11—C12—H12120.2
C6—C1—C2119.5 (3)C7—C12—H12120.2
N1—C1—C2118.1 (3)O1—C13—C14107.4 (3)
O1—C2—C3124.9 (3)O1—C13—H13A110.2
O1—C2—C1115.2 (3)C14—C13—H13A110.2
C3—C2—C1119.8 (3)O1—C13—H13B110.2
C2—C3—C4120.0 (3)C14—C13—H13B110.2
C2—C3—H3120.0H13A—C13—H13B108.5
C4—C3—H3120.0C13—C14—H14A109.5
C5—C4—C3120.7 (3)C13—C14—H14B109.5
C5—C4—H4119.7H14A—C14—H14B109.5
C3—C4—H4119.7C13—C14—H14C109.5
C4—C5—C6119.9 (4)H14A—C14—H14C109.5
C4—C5—H5120.0H14B—C14—H14C109.5
C6—C5—H5120.0
N1—Hg1—O1—C2−16.5 (2)N1—C1—C2—O10.9 (4)
Cl1—Hg1—O1—C2159.32 (18)C6—C1—C2—C33.1 (5)
N3—Hg1—O1—C2−24.7 (2)N1—C1—C2—C3−179.3 (3)
N1—Hg1—O1—C13176.7 (3)O1—C2—C3—C4178.8 (3)
Cl1—Hg1—O1—C13−7.4 (3)C1—C2—C3—C4−1.0 (5)
N3—Hg1—O1—C13168.5 (3)C2—C3—C4—C5−1.2 (5)
O1—Hg1—N1—N2−173.2 (2)C3—C4—C5—C61.2 (6)
N3—Hg1—N1—N2−2.54 (18)N1—C1—C6—C5179.4 (3)
O1—Hg1—N1—C119.7 (2)C2—C1—C6—C5−3.1 (5)
N3—Hg1—N1—C1−169.6 (3)C4—C5—C6—C10.9 (6)
C1—N1—N2—N3172.7 (3)N2—N3—C7—C8−173.8 (3)
Hg1—N1—N2—N34.5 (3)N2—N3—C7—C1210.7 (4)
N1—N2—N3—C7−176.7 (3)C12—C7—C8—C9−0.7 (5)
N1—N2—N3—Hg1−3.1 (2)N3—C7—C8—C9−176.5 (3)
N1—Hg1—N3—N22.39 (17)C7—C8—C9—C100.1 (5)
Cl1—Hg1—N3—N2−172.60 (15)C8—C9—C10—C110.0 (5)
O1—Hg1—N3—N212.1 (2)C8—C9—C10—N4−178.9 (3)
N1—Hg1—N3—C7164.2 (7)O2—N4—C10—C9175.2 (3)
Cl1—Hg1—N3—C7−10.8 (7)O3—N4—C10—C9−3.7 (5)
O1—Hg1—N3—C7173.8 (6)O2—N4—C10—C11−3.6 (5)
N2—N1—C1—C6−10.1 (5)O3—N4—C10—C11177.4 (3)
Hg1—N1—C1—C6156.5 (3)C9—C10—C11—C120.5 (5)
N2—N1—C1—C2172.4 (3)N4—C10—C11—C12179.3 (3)
Hg1—N1—C1—C2−21.0 (4)C10—C11—C12—C7−1.0 (5)
C13—O1—C2—C31.7 (5)C8—C7—C12—C111.1 (5)
Hg1—O1—C2—C3−167.2 (3)N3—C7—C12—C11176.5 (3)
C13—O1—C2—C1−178.5 (3)C2—O1—C13—C14−179.4 (3)
Hg1—O1—C2—C112.6 (3)Hg1—O1—C13—C14−13.6 (4)
C6—C1—C2—O1−176.7 (3)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.543.489 (5)174
C5—H5···O2ii0.952.553.390 (5)147
C9—H9···Cl1iii0.952.803.738 (4)169
C13—H13A···O3iv0.992.473.431 (5)162
C13—H13B···Cg2v0.992.813.570 (4)134

Symmetry codes: (i) x+1, −y+1, z−1/2; (ii) x+1/2, −y+3/2, z−1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) x+1, y, z; (v) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2293).

References

  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Horner, M., Manzoni de Oliveira, G., Bonini, J. S. & Fenner, H. (2006). J. Organomet. Chem.691, 655–658.
  • Melardi, M. R., Rofouei, M. K. & Massomi, J. (2007). Anal. Sci.23, x67–x68.
  • Melardi, M. R., Salemi, Y., Razi Kazemi, S. & Rofouei, M. K. (2009). Acta Cryst. E65, m302. [PMC free article] [PubMed]
  • Moore, D. S. & Robinson, S. D. (1986). Adv. Inorg. Chem. Radiochem.30, 1–68.
  • Rofouei, M. K., Hematyar, M., Ghoulipour, V. & Attar Gharamaleki, J. (2009). Inorg. Chim. Acta, 362, 3777–3784.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vrieze, K. & Van Koten, G. (1987). Comprehensive Coordination Chemistry, pp. 189–244. Oxford: Pergamon Press.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography