PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2002.
Published online 2010 July 14. doi:  10.1107/S1600536810026991
PMCID: PMC3007567

1-[6-Chloro-4-(2-chloro­phen­yl)-2-methyl-3-quinol­yl]ethanone

Abstract

The title compound, C18H13Cl2NO, features an essentially planar quinoline ring system (r.m.s. deviation = 0.023 Å) with the acetyl [C—C—C—O torsion angle = −78.27 (17)°] and benzene [C—C—C—C torsion angle = 110.11 (14)°] substituents being twisted out of the plane; the dihedral angle formed between the mean planes of these two substituents is 58.01 (8)°. The acetyl O and benzene-bound Cl atoms lie to opposite sides of the mol­ecule. Centrosymmetric aggregates mediated by pairs of C—H(...)O contacts are found in the crystal structure, and these are connected into a two-dimensional array in the (An external file that holds a picture, illustration, etc.
Object name is e-66-o2002-efi1.jpg01) plane via Cl(...)O [3.0508 (11) Å] inter­actions.

Related literature

For background to the pharmaceutical potential of quinoline derivatives, see: Musiol et al. (2006 [triangle]). For related structures, see: Kaiser et al. (2009 [triangle]); Viji et al. (2010 [triangle]). For a review on halogen bonding, including short halogen(...)oxygen inter­actions, see: Fourmigué (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2002-scheme1.jpg

Experimental

Crystal data

  • C18H13Cl2NO
  • M r = 330.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2002-efi3.jpg
  • a = 10.3105 (6) Å
  • b = 12.8882 (7) Å
  • c = 11.7968 (7) Å
  • β = 93.367 (1)°
  • V = 1564.90 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.42 mm−1
  • T = 100 K
  • 0.29 × 0.24 × 0.19 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.933, T max = 1.000
  • 14786 measured reflections
  • 3594 independent reflections
  • 3189 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.079
  • S = 1.03
  • 3594 reflections
  • 201 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026991/lh5080sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026991/lh5080Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

On-going structural studies of quinoline derivatives (Kaiser et al., 2009; Viji et al., 2010) are motivated by their potential pharmacological properties (Musiol et al., 2006). Herein, the crystal and molecular structure of the title compound (I) is described.

The non-hydrogen atoms comprising the quinoline nucleus in (I) are planar [r.m.s. deviation = 0.023 Å]. Each of the attached acetyl and benzene groups are twisted out of the plane of the quinoline residue as seen in the values of the C1–C2–C11–O1 and C2–C3–C13–C14 torsion angles of -78.27 (17) and 110.11 (14) °, respectively. The acetyl group and benzene ring are non-parallel with the dihedral angle between their least-squares planes being 58.01 (8) °. The acetyl-O and benzene-Cl atoms lie to opposite sides of the molecule.

The most prominent intermolecular interactions in the crystal structure are of the type C–H···O, Table 1, and Cl···O (Fourmigué, 2009). The C–H···O contacts lead to the formation of centrosymmetric dimers and these are connected into a 2-D array in the (1 0 1) plane by Cl···O interactions [Cl2···O1i = 3.0508 (11) Å for -1/2 + x, 3/2 - y, -1/2 + z].

Experimental

A mixture of 2-amino-2',5-dichlorobenzophenone (0.01 M), acetylacetone (0.01 M) and a catalytic amount of conc. HCl was irradiated under 240 W for about 6 min. The resultant solid was filtered, dried and purified by column chromatography using a 1:1 mixture of ethyl acetate and petroleum ether and recrystallized using ethanol. M. pt. 389 K. Yield: 58%

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
2-D array formed in the (1 0 1) plane in (I) mediated by C–H···O and Cl···O contacts shown as orange and purple dashed lines, respectively.

Crystal data

C18H13Cl2NOF(000) = 680
Mr = 330.22Dx = 1.402 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6804 reflections
a = 10.3105 (6) Åθ = 2.3–28.2°
b = 12.8882 (7) ŵ = 0.42 mm1
c = 11.7968 (7) ÅT = 100 K
β = 93.367 (1)°Block, colourless
V = 1564.90 (16) Å30.29 × 0.24 × 0.19 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer3594 independent reflections
Radiation source: fine-focus sealed tube3189 reflections with I > 2σ(I)
graphiteRint = 0.025
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.933, Tmax = 1.000k = −16→16
14786 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0409P)2 + 0.6548P] where P = (Fo2 + 2Fc2)/3
3594 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.23962 (3)1.07600 (3)0.72582 (3)0.02312 (9)
Cl20.13655 (3)0.82921 (3)0.61673 (3)0.02099 (9)
O10.46437 (10)0.84047 (8)1.00816 (9)0.0300 (2)
N10.04450 (12)0.78055 (9)1.02995 (9)0.0227 (2)
C10.17096 (14)0.76859 (10)1.02455 (11)0.0212 (3)
C20.24419 (13)0.82174 (10)0.94326 (10)0.0175 (3)
C30.18344 (12)0.88978 (9)0.86805 (10)0.0150 (2)
C40.04755 (12)0.90673 (9)0.87489 (10)0.0155 (2)
C5−0.02314 (12)0.97804 (10)0.80428 (10)0.0160 (2)
H50.01991.01860.75070.019*
C6−0.15383 (12)0.98816 (10)0.81377 (10)0.0179 (3)
C7−0.22160 (13)0.92969 (11)0.89191 (11)0.0224 (3)
H7−0.31280.93740.89590.027*
C8−0.15385 (14)0.86143 (11)0.96212 (11)0.0234 (3)
H8−0.19870.82201.01550.028*
C9−0.01808 (13)0.84880 (10)0.95623 (10)0.0187 (3)
C100.23720 (17)0.69329 (11)1.10655 (12)0.0294 (3)
H10A0.17170.65651.14810.044*
H10B0.29570.73121.16040.044*
H10C0.28740.64321.06460.044*
C110.38793 (14)0.80115 (10)0.93929 (11)0.0209 (3)
C120.42837 (16)0.72882 (13)0.84825 (13)0.0326 (4)
H12A0.52190.71570.85840.049*
H12B0.40850.76030.77360.049*
H12C0.38110.66320.85320.049*
C130.25864 (12)0.94625 (10)0.78298 (10)0.0148 (2)
C140.24475 (12)0.92459 (10)0.66698 (10)0.0159 (2)
C150.31894 (13)0.97515 (10)0.58914 (11)0.0197 (3)
H150.30910.95840.51070.024*
C160.40740 (13)1.05034 (11)0.62726 (11)0.0208 (3)
H160.45821.08550.57470.025*
C170.42194 (13)1.07433 (10)0.74183 (12)0.0200 (3)
H170.48181.12650.76750.024*
C180.34908 (12)1.02213 (10)0.81890 (11)0.0173 (3)
H180.36081.03820.89740.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01579 (16)0.03008 (18)0.02304 (17)0.00616 (12)−0.00267 (12)−0.00421 (13)
Cl20.02021 (17)0.02349 (17)0.01915 (15)−0.00465 (12)0.00013 (12)−0.00655 (12)
O10.0281 (6)0.0284 (5)0.0319 (5)0.0051 (4)−0.0132 (4)−0.0042 (4)
N10.0347 (7)0.0172 (5)0.0166 (5)−0.0016 (5)0.0055 (5)0.0005 (4)
C10.0338 (8)0.0147 (6)0.0150 (6)0.0018 (5)−0.0001 (5)−0.0009 (5)
C20.0224 (7)0.0147 (6)0.0152 (6)0.0014 (5)−0.0015 (5)−0.0043 (5)
C30.0174 (6)0.0141 (5)0.0133 (5)−0.0003 (5)0.0004 (4)−0.0027 (4)
C40.0173 (6)0.0146 (6)0.0148 (5)−0.0012 (5)0.0015 (5)−0.0031 (4)
C50.0158 (6)0.0169 (6)0.0157 (6)−0.0009 (5)0.0028 (4)−0.0017 (5)
C60.0163 (6)0.0211 (6)0.0159 (6)0.0010 (5)−0.0009 (5)−0.0056 (5)
C70.0155 (6)0.0306 (7)0.0217 (6)−0.0043 (5)0.0059 (5)−0.0076 (5)
C80.0248 (7)0.0261 (7)0.0204 (6)−0.0070 (6)0.0097 (5)−0.0034 (5)
C90.0246 (7)0.0162 (6)0.0157 (6)−0.0026 (5)0.0045 (5)−0.0029 (5)
C100.0456 (9)0.0204 (7)0.0217 (7)0.0052 (6)−0.0018 (6)0.0041 (5)
C110.0242 (7)0.0172 (6)0.0207 (6)0.0055 (5)−0.0039 (5)0.0016 (5)
C120.0279 (8)0.0373 (9)0.0320 (8)0.0138 (7)−0.0028 (6)−0.0102 (7)
C130.0122 (6)0.0159 (6)0.0163 (6)0.0035 (4)0.0007 (4)−0.0002 (4)
C140.0138 (6)0.0163 (6)0.0174 (6)0.0010 (5)−0.0009 (5)−0.0028 (5)
C150.0192 (6)0.0242 (7)0.0160 (6)0.0026 (5)0.0021 (5)−0.0002 (5)
C160.0174 (6)0.0223 (7)0.0232 (6)0.0006 (5)0.0058 (5)0.0027 (5)
C170.0138 (6)0.0194 (6)0.0270 (7)−0.0009 (5)0.0021 (5)−0.0031 (5)
C180.0142 (6)0.0194 (6)0.0181 (6)0.0019 (5)−0.0005 (5)−0.0031 (5)

Geometric parameters (Å, °)

Cl1—C61.7415 (14)C8—H80.9500
Cl2—C141.7405 (13)C10—H10A0.9800
O1—C111.2095 (17)C10—H10B0.9800
N1—C11.3181 (19)C10—H10C0.9800
N1—C91.3713 (17)C11—C121.4996 (19)
C1—C21.4297 (18)C12—H12A0.9800
C1—C101.5055 (19)C12—H12B0.9800
C2—C31.3722 (17)C12—H12C0.9800
C2—C111.5091 (19)C13—C141.3956 (17)
C3—C41.4250 (17)C13—C181.3997 (18)
C3—C131.4932 (17)C14—C151.3912 (18)
C4—C51.4137 (17)C15—C161.3874 (19)
C4—C91.4186 (17)C15—H150.9500
C5—C61.3649 (17)C16—C171.3860 (19)
C5—H50.9500C16—H160.9500
C6—C71.4077 (18)C17—C181.3871 (18)
C7—C81.371 (2)C17—H170.9500
C7—H70.9500C18—H180.9500
C8—C91.4150 (19)
C1—N1—C9118.31 (11)C1—C10—H10C109.5
N1—C1—C2122.63 (12)H10A—C10—H10C109.5
N1—C1—C10117.20 (13)H10B—C10—H10C109.5
C2—C1—C10120.16 (13)O1—C11—C12122.95 (13)
C3—C2—C1120.06 (12)O1—C11—C2120.52 (12)
C3—C2—C11120.27 (12)C12—C11—C2116.51 (12)
C1—C2—C11119.66 (11)C11—C12—H12A109.5
C2—C3—C4118.32 (11)C11—C12—H12B109.5
C2—C3—C13120.71 (11)H12A—C12—H12B109.5
C4—C3—C13120.96 (11)C11—C12—H12C109.5
C5—C4—C9119.40 (12)H12A—C12—H12C109.5
C5—C4—C3122.74 (11)H12B—C12—H12C109.5
C9—C4—C3117.86 (11)C14—C13—C18117.70 (11)
C6—C5—C4119.41 (12)C14—C13—C3122.28 (11)
C6—C5—H5120.3C18—C13—C3120.00 (11)
C4—C5—H5120.3C15—C14—C13121.65 (12)
C5—C6—C7122.21 (12)C15—C14—Cl2118.18 (10)
C5—C6—Cl1118.85 (10)C13—C14—Cl2120.13 (10)
C7—C6—Cl1118.94 (10)C16—C15—C14119.32 (12)
C8—C7—C6118.96 (12)C16—C15—H15120.3
C8—C7—H7120.5C14—C15—H15120.3
C6—C7—H7120.5C17—C16—C15120.22 (12)
C7—C8—C9120.97 (12)C17—C16—H16119.9
C7—C8—H8119.5C15—C16—H16119.9
C9—C8—H8119.5C16—C17—C18119.95 (12)
N1—C9—C8118.21 (12)C16—C17—H17120.0
N1—C9—C4122.76 (12)C18—C17—H17120.0
C8—C9—C4119.03 (12)C17—C18—C13121.15 (12)
C1—C10—H10A109.5C17—C18—H18119.4
C1—C10—H10B109.5C13—C18—H18119.4
H10A—C10—H10B109.5
C9—N1—C1—C2−1.68 (19)C7—C8—C9—C4−1.06 (19)
C9—N1—C1—C10179.92 (11)C5—C4—C9—N1−178.00 (11)
N1—C1—C2—C31.17 (19)C3—C4—C9—N12.15 (18)
C10—C1—C2—C3179.53 (12)C5—C4—C9—C82.05 (18)
N1—C1—C2—C11−177.73 (12)C3—C4—C9—C8−177.80 (11)
C10—C1—C2—C110.63 (18)C3—C2—C11—O1102.83 (15)
C1—C2—C3—C41.04 (17)C1—C2—C11—O1−78.27 (17)
C11—C2—C3—C4179.94 (11)C3—C2—C11—C12−78.41 (16)
C1—C2—C3—C13179.73 (11)C1—C2—C11—C12100.49 (15)
C11—C2—C3—C13−1.37 (18)C2—C3—C13—C14110.11 (14)
C2—C3—C4—C5177.58 (11)C4—C3—C13—C14−71.23 (16)
C13—C3—C4—C5−1.11 (18)C2—C3—C13—C18−68.30 (16)
C2—C3—C4—C9−2.57 (17)C4—C3—C13—C18110.35 (14)
C13—C3—C4—C9178.74 (11)C18—C13—C14—C150.86 (18)
C9—C4—C5—C6−1.52 (18)C3—C13—C14—C15−177.59 (12)
C3—C4—C5—C6178.33 (11)C18—C13—C14—Cl2178.64 (9)
C4—C5—C6—C7−0.03 (19)C3—C13—C14—Cl20.19 (17)
C4—C5—C6—Cl1−179.77 (9)C13—C14—C15—C16−1.16 (19)
C5—C6—C7—C81.0 (2)Cl2—C14—C15—C16−178.98 (10)
Cl1—C6—C7—C8−179.22 (10)C14—C15—C16—C170.3 (2)
C6—C7—C8—C9−0.5 (2)C15—C16—C17—C180.8 (2)
C1—N1—C9—C8179.94 (12)C16—C17—C18—C13−1.13 (19)
C1—N1—C9—C4−0.02 (19)C14—C13—C18—C170.29 (18)
C7—C8—C9—N1178.98 (12)C3—C13—C18—C17178.78 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.952.593.2460 (17)127

Symmetry codes: (i) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5080).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci.13, 36–45.
  • Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.
  • Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem.14, 3592–3598. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Viji, A. J., Sarveswari, S., Vijayakumar, V., Tan, K. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1780. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography