PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m1013.
Published online 2010 July 24. doi:  10.1107/S1600536810028631
PMCID: PMC3007566

(S)-1,2,4-Trimethyl­piperazine-1,4-diium tetra­chloridozincate(II)

Abstract

In the title compound, (C7H18N2)[ZnCl4], the Zn atom adopts a slightly distorted tetra­hedral geometry. The diprotonated piperazine ring adopts a chair conformation. In the crystal structure, the cations and anions are linked by inter­molecular N—H(...)Cl hydrogen bonds into a chain along [001].

Related literature

For the ferroelectric behavior of chiral coordination compounds, see: Fu et al. (2007 [triangle]). For non-linear optical second harmonic generation of chiral coordination compounds, see: Qu et al. (2003 [triangle]). For transition-metal complexes of (S)-2-methyl­piperazine, see: Ye et al. (2009 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1013-scheme1.jpg

Experimental

Crystal data

  • (C7H18N2)[ZnCl4]
  • M r = 337.40
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1013-efi1.jpg
  • a = 8.5197 (17) Å
  • b = 9.7036 (19) Å
  • c = 17.013 (3) Å
  • V = 1406.5 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.48 mm−1
  • T = 293 K
  • 0.30 × 0.28 × 0.26 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.80, T max = 0.90
  • 14785 measured reflections
  • 3217 independent reflections
  • 2802 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.067
  • S = 1.08
  • 3217 reflections
  • 138 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.36 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1355 Friedel pairs
  • Flack parameter: 0.046 (14)

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810028631/bx2289sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028631/bx2289Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Anyang Institute of Technology.

supplementary crystallographic information

Comment

The existence of a chiral centre in an organic ligand is very important for the construction noncentrosymmetric or chiral coordination polymers that exhibit desirable physical properties such as ferroelectricity (Fu et al., 2007) and nonlinear optical second harmonic generation (Qu et al., 2003). Chiral (S)-2-methylpiperazine has a chiral centre which have shown tremendous scope in the synthesis of transition-metal complexes (Ye et al., 2009). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry. We report here the crystal structure of the title compound

The asymmetric unit of the title compound, (C7H18N2)[ZnCl4] (Fig.1), consists of one 1,2,4-trimethylpiperazinium cation and one ZnCl42- anion. The Zn atom adopts a slightly distorted tetrahedral geometry. The diprotonated piperazine ring adopts a chair conformation with Cremer & Pople (1975) puckering parameters : QT =0.5673 (3)Å, θ = 1.8 (3)° , [var phi]= 67 (10)°. In the crystal structure, cations and anions are linked by intermolecular N—H···Cl hydrogen bonds into a one-dimensional chain viewed along the c-axis with set graph-motif C22 (9) (Bernstein, et al., 1995) (Fig.2).

Experimental

A mixture of (S)-1,2,4-trimethylpiperazine quinine (1 mmol, 0.128 g), ZnCl2(1 mmol, 0.136 g) and 10% aqueous HCl (6 ml) were mixed and dissolved in 20 ml water by heating to 363 K (15 min) forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed after 8 days.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93–0.98Å and N—H = 0.90 Å, and refined using a riding model, with Uiso(H)=1.2Ueq(C,N) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level
Fig. 2.
The packing viewed along the b-axis. Hydrogen bonds are drawn as dashed lines

Crystal data

(C7H18N2)[ZnCl4]F(000) = 688
Mr = 337.40Dx = 1.593 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2802 reflections
a = 8.5197 (17) Åθ = 3.2–27.5°
b = 9.7036 (19) ŵ = 2.48 mm1
c = 17.013 (3) ÅT = 293 K
V = 1406.5 (5) Å3Block, colourless
Z = 40.30 × 0.28 × 0.26 mm

Data collection

Rigaku SCXmini diffractometer3217 independent reflections
Radiation source: fine-focus sealed tube2802 reflections with I > 2σ(I)
graphiteRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = −11→10
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)k = −12→12
Tmin = 0.80, Tmax = 0.90l = −22→22
14785 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067w = 1/[σ2(Fo2) + (0.0257P)2 + 0.2767P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3217 reflectionsΔρmax = 0.36 e Å3
138 parametersΔρmin = −0.36 e Å3
0 restraintsAbsolute structure: Flack (1983), 1355 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.046 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.59768 (3)0.49854 (3)0.125016 (17)0.03377 (9)
C10.2131 (4)0.8709 (3)0.14589 (17)0.0359 (7)
H10.25760.85950.19860.043*
C20.3442 (3)0.8994 (3)0.08782 (17)0.0368 (7)
H2A0.41670.82230.08820.044*
H2B0.30000.90600.03540.044*
C30.3220 (4)1.1457 (3)0.10626 (19)0.0481 (9)
H3A0.27991.15990.05390.058*
H3B0.37911.22810.12120.058*
C40.1875 (4)1.1231 (3)0.16346 (19)0.0449 (8)
H4A0.22831.11940.21660.054*
H4B0.11511.20000.16020.054*
C5−0.0354 (4)0.9767 (4)0.19972 (18)0.0491 (8)
H5A0.00100.96780.25290.074*
H5B−0.09350.89580.18530.074*
H5C−0.10191.05620.19550.074*
C60.5641 (4)1.0490 (4)0.0483 (2)0.0628 (11)
H6A0.63050.96910.04770.094*
H6B0.62411.12790.06430.094*
H6C0.52241.0643−0.00340.094*
C70.1282 (4)0.7396 (3)0.1223 (2)0.0580 (9)
H7A0.08400.75080.07080.087*
H7B0.04580.72090.15930.087*
H7C0.20110.66420.12190.087*
Cl10.44725 (9)0.46036 (8)0.01637 (4)0.0479 (2)
Cl20.42671 (10)0.48120 (12)0.22655 (4)0.0642 (3)
Cl30.70714 (11)0.70748 (9)0.11735 (6)0.0600 (2)
Cl40.79167 (12)0.34029 (10)0.13266 (5)0.0606 (2)
N10.1024 (2)0.9929 (3)0.14575 (12)0.0334 (5)
N20.4314 (3)1.0266 (3)0.10512 (14)0.0390 (6)
H1A0.054 (3)1.003 (3)0.0967 (16)0.033 (7)*
H2C0.477 (4)1.023 (3)0.1532 (18)0.046 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.03299 (15)0.04154 (17)0.02676 (15)−0.00188 (15)−0.00155 (14)−0.00045 (16)
C10.0323 (14)0.0395 (17)0.0359 (16)0.0029 (14)−0.0043 (14)0.0082 (12)
C20.0345 (16)0.0368 (17)0.0390 (15)0.0024 (13)0.0001 (13)−0.0014 (13)
C30.055 (2)0.0371 (18)0.052 (2)−0.0065 (15)0.0007 (17)0.0019 (14)
C40.048 (2)0.0392 (19)0.0472 (17)−0.0059 (15)−0.0009 (17)−0.0108 (14)
C50.0387 (16)0.064 (2)0.0445 (17)0.0051 (17)0.0090 (14)0.0016 (15)
C60.045 (2)0.084 (3)0.059 (2)−0.0144 (19)0.0148 (18)0.0118 (19)
C70.0445 (18)0.0365 (17)0.093 (3)−0.0038 (13)0.009 (2)0.008 (2)
Cl10.0417 (4)0.0762 (6)0.0259 (3)−0.0185 (4)−0.0051 (3)0.0063 (3)
Cl20.0424 (4)0.1219 (9)0.0283 (4)−0.0064 (6)0.0046 (3)0.0013 (4)
Cl30.0541 (4)0.0453 (5)0.0806 (6)−0.0143 (4)−0.0084 (6)−0.0038 (5)
Cl40.0641 (5)0.0642 (6)0.0536 (5)0.0256 (5)−0.0113 (5)−0.0086 (4)
N10.0325 (11)0.0402 (13)0.0274 (11)0.0026 (14)−0.0013 (9)0.0007 (10)
N20.0331 (13)0.0481 (17)0.0357 (13)−0.0095 (11)−0.0032 (10)0.0030 (10)

Geometric parameters (Å, °)

Zn1—Cl32.2355 (9)C4—H4A0.9700
Zn1—Cl42.2597 (9)C4—H4B0.9700
Zn1—Cl22.2658 (8)C5—N11.499 (3)
Zn1—Cl12.2795 (8)C5—H5A0.9600
C1—N11.513 (4)C5—H5B0.9600
C1—C21.517 (4)C5—H5C0.9600
C1—C71.519 (4)C6—N21.504 (4)
C1—H10.9800C6—H6A0.9600
C2—N21.470 (4)C6—H6B0.9600
C2—H2A0.9700C6—H6C0.9600
C2—H2B0.9700C7—H7A0.9600
C3—N21.485 (4)C7—H7B0.9600
C3—C41.519 (5)C7—H7C0.9600
C3—H3A0.9700N1—H1A0.93 (3)
C3—H3B0.9700N2—H2C0.91 (3)
C4—N11.487 (4)
Cl3—Zn1—Cl4108.34 (5)N1—C5—H5A109.5
Cl3—Zn1—Cl2112.33 (4)N1—C5—H5B109.5
Cl4—Zn1—Cl2112.08 (4)H5A—C5—H5B109.5
Cl3—Zn1—Cl1109.55 (3)N1—C5—H5C109.5
Cl4—Zn1—Cl1110.33 (4)H5A—C5—H5C109.5
Cl2—Zn1—Cl1104.16 (3)H5B—C5—H5C109.5
N1—C1—C2108.4 (2)N2—C6—H6A109.5
N1—C1—C7111.1 (3)N2—C6—H6B109.5
C2—C1—C7109.3 (3)H6A—C6—H6B109.5
N1—C1—H1109.3N2—C6—H6C109.5
C2—C1—H1109.3H6A—C6—H6C109.5
C7—C1—H1109.3H6B—C6—H6C109.5
N2—C2—C1113.2 (2)C1—C7—H7A109.5
N2—C2—H2A108.9C1—C7—H7B109.5
C1—C2—H2A108.9H7A—C7—H7B109.5
N2—C2—H2B108.9C1—C7—H7C109.5
C1—C2—H2B108.9H7A—C7—H7C109.5
H2A—C2—H2B107.7H7B—C7—H7C109.5
N2—C3—C4111.7 (3)C4—N1—C5110.3 (2)
N2—C3—H3A109.3C4—N1—C1111.1 (2)
C4—C3—H3A109.3C5—N1—C1113.9 (2)
N2—C3—H3B109.3C4—N1—H1A107.7 (19)
C4—C3—H3B109.3C5—N1—H1A102.4 (16)
H3A—C3—H3B107.9C1—N1—H1A111.0 (18)
N1—C4—C3111.1 (2)C2—N2—C3109.8 (2)
N1—C4—H4A109.4C2—N2—C6111.9 (2)
C3—C4—H4A109.4C3—N2—C6111.6 (3)
N1—C4—H4B109.4C2—N2—H2C111 (2)
C3—C4—H4B109.4C3—N2—H2C107 (2)
H4A—C4—H4B108.0C6—N2—H2C105.5 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.93 (3)2.16 (3)3.092 (2)177 (3)
N2—H2C···Cl2ii0.91 (3)2.24 (3)3.140 (3)171 (3)

Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2289).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc.129, 5346–5347. [PubMed]
  • Qu, Z.-R., Zhao, H., Wang, X.-S., Li, Y.-H., Song, Y.-M., Lui, Y.-J., Ye, Q., Xiong, R.-G., Abrahams, B. F., Xue, Z.-L. & You, X.-Z. (2003). Inorg. Chem.42, 7710–7712. [PubMed]
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc.131, 42–43. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography