PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1946.
Published online 2010 July 7. doi:  10.1107/S160053681002581X
PMCID: PMC3007565

Guanidinium 3-nitro­benzoate

Abstract

The title compound, CH6N3 +·C7H4NO4 , an anhydrous guanidinium salt, shows a N—H(...)O hydrogen-bond network in which the guanidinium cation is involved in three cyclic R 2 1(6) hydrogen-bonding associations with separate carboxyl­ate O-atom acceptors. Further peripheral associations include a cyclic R 1 2(4) cation–anion inter­action, forming inter­linked undulating sheets in the three-dimensional structure.

Related literature

For the structures of other guanidinium benzoate salts, see: Kleb et al. (1998 [triangle]); Pereira Silva et al. (2007 [triangle], 2010 [triangle]). For graph-set analysis, see: Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1946-scheme1.jpg

Experimental

Crystal data

  • CH6N3 +·C7H4NO4
  • M r = 226.20
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1946-efi2.jpg
  • a = 7.3978 (12) Å
  • b = 10.1302 (12) Å
  • c = 13.7118 (17) Å
  • V = 1027.6 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 297 K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.94, T max = 0.98
  • 7455 measured reflections
  • 1252 independent reflections
  • 1092 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.096
  • S = 1.03
  • 1252 reflections
  • 169 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) within WinGX (Farrugia, 1999 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002581X/bv2146sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002581X/bv2146Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology, Queensland University of Technology and the School of Biomolecular and Physical Sciences, Griffith University.

supplementary crystallographic information

Comment

The structures of the guanidinium salts of the simple benzoic acids are not numerous in the crystallographic literature, being limited to the benzoate (Pereira Silva et al., 2007), 4-aminobenzoate (Pereira Silva et al., 2010) and 4-nitrobenzoate (Kleb et al., 1998). In these anhydrous structures and those of the anhydrous guanidinium salts of aromatic carboxylates generally, the cations give variously cyclic hydrogen-bonding interactions which may be classified by the graph sets R22(8), R12(4) or R21(6) (Etter et al., 1990). Our 1:1 stoichiometric reaction of 3-nitrobenzoic acid with guanidinium carbonate in methanol gave large relatively hard, chemically stable crystals of guanidinium 3-nitrobenzoate, CH6N3+ C7H4NO4- (I), and the structure is reported here.

In the structure of (I) each guanidinium cation is involved in three cyclic R21(6) hydrogen-bonding associations (Table 1) with separate carboxylate O-acceptors (Figs. 1, 2). Further peripheral associations include a cyclic R12(4) cation–anion interaction, form inter-linked undulating sheets which give a three-dimensional framework structure (Fig. 3).

The carboxylate group of the anion is rotated slightly out of the plane of the benzene ring [torsion angle C2–C1–C11–O11, 160.0 (2)°]. However, the unassociated nitro group is essentially coplanar with the ring [torsion angle C2–C3–N31–O32, 174.4 (2)°].

Experimental

The title compound was synthesized by heating together under reflux for 10 minutes 1 mmol of 3-nitrobenzoic acid and 0.5 mmol of guanidine carbonate in 50 ml of methanol. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave large colourless plates (m.p. 514 K) from which a suitable analytical specimen was cleaved.

Refinement

Guanidinium hydrogen atoms were located by difference methods and their positional and isotropic displacement parameters were refined. The H atoms of the aromatic ring of the anion were included in the refinement in calculated positions (C–H = 0.93 Å) and allowed to ride, with Uiso(H) = 1.2Ueq(C). Friedel pairs were merged in the data set used for final structure refinement.

Figures

Fig. 1.
The molecular configuration and atom-numbering scheme for the cation and anion species in (I). Non-H atoms are shown as 40% probability ellipsoids. Inter-ion hydrogen bonds are shown as dashed lines.
Fig. 2.
Peripheral hydrogen-bonding extension of the R21(6)- associated guanidinium-tris(3-nitrobenzoate) structures of (I), viewed down the a cell direction. For symmetry codes, see Table 1. Hydrogen bonds are shown as dashed lines.
Fig. 3.
The three-dimensional structure of (I) viewed down the approximate b cell direction. Non-associative H atoms are omitted.

Crystal data

CH6N3+·C7H4NO4Dx = 1.462 Mg m3
Mr = 226.20Melting point: 514 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2964 reflections
a = 7.3978 (12) Åθ = 3.0–28.9°
b = 10.1302 (12) ŵ = 0.12 mm1
c = 13.7118 (17) ÅT = 297 K
V = 1027.6 (2) Å3Block, colourless
Z = 40.30 × 0.30 × 0.20 mm
F(000) = 472

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer1252 independent reflections
Radiation source: Enhance (Mo) X-ray source1092 reflections with I > 2σ(I)
graphiteRint = 0.030
ω scansθmax = 26.5°, θmin = 3.0°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)h = −9→9
Tmin = 0.94, Tmax = 0.98k = −12→11
7455 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0716P)2] where P = (Fo2 + 2Fc2)/3
1252 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O110.8853 (3)0.39642 (19)−0.15616 (11)0.0763 (7)
O120.8391 (3)0.51830 (14)−0.02410 (12)0.0587 (5)
O310.9478 (4)0.2929 (2)0.29189 (13)0.0891 (8)
O320.8919 (4)0.0871 (2)0.30563 (13)0.0879 (8)
N310.9085 (3)0.1871 (2)0.25680 (14)0.0582 (6)
C10.8552 (3)0.28643 (18)−0.00456 (13)0.0395 (5)
C20.8834 (3)0.29418 (19)0.09621 (14)0.0395 (5)
C30.8802 (3)0.1785 (2)0.15053 (15)0.0438 (6)
C40.8496 (3)0.0567 (2)0.10846 (18)0.0546 (7)
C50.8224 (3)0.0507 (2)0.00897 (18)0.0579 (8)
C60.8262 (3)0.1633 (2)−0.04688 (16)0.0487 (6)
C110.8592 (3)0.4098 (2)−0.06632 (14)0.0472 (6)
N1G0.5698 (4)0.7518 (2)0.02372 (14)0.0596 (7)
N2G0.5023 (3)0.7924 (2)0.18458 (16)0.0624 (7)
N3G0.6559 (3)0.6050 (2)0.14213 (17)0.0599 (7)
C1G0.5763 (3)0.7166 (2)0.11723 (14)0.0468 (6)
H20.903900.375200.126200.0470*
H40.84730−0.019500.146300.0660*
H50.80130−0.03050−0.020600.0690*
H60.809200.15720−0.113900.0580*
H11G0.617 (4)0.701 (3)−0.015 (2)0.070 (9)*
H12G0.514 (4)0.821 (3)0.012 (2)0.072 (8)*
H21G0.444 (4)0.869 (3)0.170 (2)0.077 (9)*
H22G0.506 (4)0.767 (3)0.244 (2)0.065 (8)*
H31G0.666 (4)0.588 (3)0.203 (2)0.065 (8)*
H32G0.715 (4)0.563 (3)0.093 (2)0.073 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O110.1174 (16)0.0759 (12)0.0357 (8)0.0071 (13)0.0050 (10)0.0078 (8)
O120.0866 (12)0.0375 (7)0.0520 (8)−0.0007 (8)0.0034 (9)0.0074 (6)
O310.148 (2)0.0728 (12)0.0464 (9)−0.0228 (14)−0.0197 (12)0.0015 (9)
O320.1360 (19)0.0687 (11)0.0591 (11)0.0044 (13)0.0017 (12)0.0305 (9)
N310.0728 (11)0.0565 (11)0.0452 (10)0.0004 (11)−0.0036 (9)0.0113 (8)
C10.0411 (9)0.0384 (10)0.0390 (9)−0.0016 (9)0.0000 (9)−0.0014 (8)
C20.0476 (10)0.0313 (8)0.0395 (9)−0.0005 (9)−0.0007 (8)0.0007 (7)
C30.0486 (10)0.0413 (10)0.0415 (10)0.0011 (9)−0.0006 (9)0.0044 (8)
C40.0643 (13)0.0340 (10)0.0656 (13)−0.0007 (10)0.0029 (12)0.0083 (10)
C50.0679 (15)0.0348 (10)0.0710 (15)−0.0073 (10)0.0012 (13)−0.0151 (10)
C60.0527 (11)0.0490 (11)0.0445 (10)−0.0037 (10)0.0000 (9)−0.0100 (9)
C110.0597 (12)0.0444 (10)0.0375 (10)0.0004 (10)0.0016 (10)0.0038 (9)
N1G0.0873 (16)0.0448 (10)0.0467 (12)0.0052 (11)0.0022 (11)0.0093 (9)
N2G0.0885 (15)0.0519 (11)0.0469 (11)0.0123 (12)0.0033 (11)−0.0015 (9)
N3G0.0854 (14)0.0511 (11)0.0433 (10)0.0130 (12)0.0016 (11)0.0069 (9)
C1G0.0588 (12)0.0398 (10)0.0418 (11)−0.0032 (10)−0.0027 (9)0.0025 (9)

Geometric parameters (Å, °)

O11—C111.254 (2)N3G—H32G0.91 (3)
O12—C111.251 (3)C1—C61.392 (3)
O31—N311.210 (3)C1—C111.510 (3)
O32—N311.221 (3)C1—C21.400 (3)
N31—C31.475 (3)C2—C31.389 (3)
N1G—C1G1.332 (3)C3—C41.381 (3)
N2G—C1G1.320 (3)C4—C51.380 (3)
N3G—C1G1.320 (3)C5—C61.374 (3)
N1G—H12G0.83 (3)C2—H20.9300
N1G—H11G0.82 (3)C4—H40.9300
N2G—H22G0.86 (3)C5—H50.9300
N2G—H21G0.91 (3)C6—H60.9300
N3G—H31G0.86 (3)
O31—N31—O32122.8 (2)C2—C3—C4122.2 (2)
O31—N31—C3118.64 (19)C3—C4—C5118.4 (2)
O32—N31—C3118.60 (19)C4—C5—C6120.8 (2)
C1G—N1G—H12G115.5 (19)C1—C6—C5121.0 (2)
H11G—N1G—H12G128 (3)O11—C11—C1117.67 (18)
C1G—N1G—H11G116 (2)O12—C11—C1117.73 (17)
H21G—N2G—H22G119 (3)O11—C11—O12124.6 (2)
C1G—N2G—H21G122.6 (18)C3—C2—H2121.00
C1G—N2G—H22G119 (2)C1—C2—H2121.00
H31G—N3G—H32G126 (3)C3—C4—H4121.00
C1G—N3G—H32G115.1 (19)C5—C4—H4121.00
C1G—N3G—H31G118 (2)C4—C5—H5120.00
C6—C1—C11120.72 (17)C6—C5—H5120.00
C2—C1—C11120.29 (17)C5—C6—H6120.00
C2—C1—C6118.99 (17)C1—C6—H6119.00
C1—C2—C3118.66 (18)N2G—C1G—N3G120.2 (2)
N31—C3—C4119.27 (19)N1G—C1G—N2G120.2 (2)
N31—C3—C2118.53 (18)N1G—C1G—N3G119.6 (2)
O31—N31—C3—C2−5.8 (3)C2—C1—C11—O12−18.9 (3)
O31—N31—C3—C4174.9 (2)C6—C1—C11—O11−19.1 (3)
O32—N31—C3—C2174.4 (2)C6—C1—C11—O12162.0 (2)
O32—N31—C3—C4−4.9 (3)C1—C2—C3—N31−179.5 (2)
C6—C1—C2—C3−0.4 (3)C1—C2—C3—C4−0.2 (3)
C11—C1—C2—C3−179.5 (2)N31—C3—C4—C5179.6 (2)
C2—C1—C6—C51.0 (3)C2—C3—C4—C50.4 (3)
C11—C1—C6—C5−180.0 (2)C3—C4—C5—C60.2 (3)
C2—C1—C11—O11160.0 (2)C4—C5—C6—C1−0.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1G—H11G···O120.82 (3)2.48 (3)3.161 (3)142 (3)
N1G—H12G···O12i0.83 (3)2.09 (3)2.887 (3)162 (3)
N2G—H21G···O11i0.91 (3)2.42 (3)3.292 (3)160 (2)
N2G—H21G···O12i0.91 (3)2.43 (3)3.159 (3)137 (2)
N2G—H22G···O11ii0.86 (3)2.29 (3)3.020 (3)143 (3)
N3G—H31G···O11ii0.86 (3)1.97 (3)2.783 (3)157 (3)
N3G—H32G···O120.91 (3)1.90 (3)2.794 (3)166 (3)
C4—H4···O31iii0.932.573.355 (3)142

Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) −x+3/2, −y+1, z+1/2; (iii) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2146).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kleb, D.-C., Schürmann, M., Preut, H. & Bleckmann, P. (1998). Z. Kristallogr. New Cryst. Struct.213, 581–582.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Pereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2007). Acta Cryst. E63, o2783.
  • Pereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2010). Acta Cryst. E66, o524. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography