PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2182–o2183.
Published online 2010 July 31. doi:  10.1107/S1600536810029090
PMCID: PMC3007557

1-Bromo-2-(10β-dihydro­artemisin­oxy)ethane

Abstract

The title compound, C17H27BrO5, DEB, is a derivative of artemisinin which is used in malara therapy. The OR-group at C12 is cis to the CH3-group at C11 and axially oriented on ring D which has a chair conformation. The crystal packing is stabilized by several weak inter­molecular C—H(...)O inter­actions, which combine to form a C—H—O bonded network parallel to (001).

Related literature

For background to malaria, see: World Health Organisation (2008 [triangle]). For the effective of artemisinin analogs against malaria, see: Ploypradith (2004 [triangle]). For the crystal structure of artemisinin, see: Kuhn & Wang (2008 [triangle]) and of dihydro­artemisinin (DHA), see: Luo et al. (1984 [triangle]). Jasinski et al. (2008a [triangle]) redetermined the structure of DHA as well as characterizing the second polymer of β-arteether (Jasinski et al., 2008b [triangle]). For the reaction of DEB with amines, see: Li et al. (2000 [triangle]). For the synthesis of artemisinin hybrids, see: Walsh et al. (2007 [triangle]); Basco et al. (2001 [triangle]); Grelepois et al. (2005 [triangle]); Gupta et al. (2002 [triangle]). For puckering analysis, see: Cremer & Pople (1975 [triangle]); Evans & Boeyens (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2182-scheme1.jpg

Experimental

Crystal data

  • C17H27BrO5
  • M r = 391.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2182-efi1.jpg
  • a = 9.2836 (2) Å
  • b = 9.1103 (2) Å
  • c = 10.2999 (2) Å
  • β = 90.395 (1)°
  • V = 871.11 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.38 mm−1
  • T = 173 K
  • 0.44 × 0.41 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: integration (XPREP; Bruker, 2005 [triangle]) T min = 0.420, T max = 0.832
  • 13762 measured reflections
  • 4196 independent reflections
  • 3432 reflections with I > 2σ(I)
  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.078
  • S = 0.95
  • 4196 reflections
  • 211 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.35 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1966 Friedel pairs
  • Flack parameter: −0.012 (7)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and SCHAKAL99 (Keller, 1999 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810029090/jj2039sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029090/jj2039Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Research Foundation, North-West University and the University of the Witwatersrand.

supplementary crystallographic information

Comment

Malaria is one of the top three priority diseases of the WHO and is becoming a worldwide threat because of its wide spread resistance to current anti-malaria drugs (World Health Organization, 2008). Artemisinin and its derivatives currently represent the most effective group of compounds against multidrug-resistant malaria with a rapid onset of action and a short half life. However, when artemisinin analogs are used as monotherapy it results in significant recrudescence (Ploypradith, 2004). Therefore it is recommended by the WHO that all uncomplicated P. falciparum infections should be treated with an artemisinin-based combination therapy (ACT).

When DHA is prepared from artemisinin by reduction, it exists as a mixture of α- and β-isomers. Luo and co-workers (Luo et al. 1984) determined that these isomers can exist in two conformations of ring D, a half-chair form and a half-boat form. DEB was tested in vitro against Plasmodium falciparum sensitive (D10) and resistant (Dd2) strains, but did not show any improved activity with respect to the reference drug: dihydroartemisinin (DHA).

The title compound, C17H27BrO5 or 2-(10β-dihydroartemisinoxy)ethylbromide (DEB), is a derivative of artemisinin. DEB was synthesized from the reaction of DHA with bromoethanol. DHA was supplied as a mixture of anomers. With the formation of DEB the OR-group at C12 is positioned cis to the CH3-group at C11 and axially oriented on ring D. Therefore, DEB can be assigned to the β-chair series. The rings in the title compound have also been previously labeled as rings A, B, C and D (scheme). Ring A has a twist boat conformation with puckering parameters (Cremer & Pople, 1975) Q, θ and [var phi] of 0.739 (2), 94.21 (15)° and 274.46 (16)°, respectively (Fig. 1). Ring B has a distorted boat conformation and ring C is in a slightly distorted chair conformation with puckering parameters Q, θ and [var phi] of 0.539 (3), 8.6 (3)° and 195.6 (18)°. Ring D is in a chair conformation with puckering parameters Q, θ and [var phi] of 0.532 (2), 178.2 (3)° and 73 (11)°. Crystal packing in DEB is stabilized by a several C—H···O weak intermolecular interactions (Table 1) some of which are shown in Fig 2. These combine to form a C—H—O bonded network parallel to (001).

Experimental

The title compound was prepared as described by Li and co-workers (Li et al., 2000). The product was recrystallized from methanol using a slow evaporation technique at room temperature with a 71% yield of white needle-like crystals. IC50 (ng/ml) of the title compound (DEB): D10 = 41.39, Dd2 = 129.47 IC50 (ng/ml) of Dihydroartemisinin: D10 = 1.45, Dd2 = 0.59.

Refinement

All H atoms were positioned geometrically, and allowed to ride on their parent atoms, with Atom—H bond lengths of 1.00 Å (CH), 0.99 Å (CH2), or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 times (CH and CH2) or 1.5 times (CH3) Ueq of the parent atom.

Figures

Fig. 1.
The molecular structure of C17H27BrO5 (DEB), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing diagram of C17H27BrO5 showing the weak intermolecular C—H···O hydrogen bonding network where chains of molecules run parallel to (001).

Crystal data

C17H27BrO5F(000) = 408
Mr = 391.30Dx = 1.492 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6155 reflections
a = 9.2836 (2) Åθ = 2.9–28.2°
b = 9.1103 (2) ŵ = 2.38 mm1
c = 10.2999 (2) ÅT = 173 K
β = 90.395 (1)°Plate, colourless
V = 871.11 (3) Å30.44 × 0.41 × 0.08 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer4196 independent reflections
Radiation source: fine-focus sealed tube3432 reflections with I > 2σ(I)
graphiteRint = 0.068
[var phi] and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: integration (XPREP; Bruker, 2005)h = −12→12
Tmin = 0.420, Tmax = 0.832k = −12→12
13762 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.078w = 1/[σ2(Fo2) + (0.0405P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
4196 reflectionsΔρmax = 0.61 e Å3
211 parametersΔρmin = −0.35 e Å3
1 restraintAbsolute structure: Flack (1983), 1966 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.012 (7)

Special details

Experimental. 1H NMR (600.17 MHz; CDCl3; Me4Si): δH 5.46 (s, 1H, H-5), 4.82 (d, J = 3.4 Hz, 1H, H-12), 4.09 (ddd, J = 11.8, 6.6, 5.5 Hz, 1H, H-16α), 3.79 – 3.73 (m, 1H, H-16β), 3.51 – 3.47 (m, 2H, H-17), 2.66 – 2.59 (m, 1H, H-11), 2.39 – 2.30 (m, 1H, H-3α), 2.01 (ddd, J = 14.6, 4.7, 3.1 Hz, 1H, H-3β), 1.92 – 1.81 (m, 2H, H-2α; H-8α), 1.73 (ddd, J = 14.2, 7.7, 3.6 Hz, 1H, H-8β), 1.62 (dq, J = 13.2, 3.3 Hz, 1H, H-9β), 1.47 (qdd, J = 12.0, 8.9, 4.1 Hz, 2H, H-2α; H-7), 1.41 (s, 3H, H-15), 1.36 – 1.28 (m, 1H, H-10), 1.22 (td, J = 11.5, 6.6 Hz, 1H, H-1), 0.93 (d, J = 6.4 Hz, 3H, H-13), 0.91 (d, J = 7.4 Hz, 3H, H-14), 0.87 (dd, J = 13.3, 3.6 Hz, 3H, H-9α). 13C NMR (150.913 MHz; CDCl3; Me4Si): δC 104.10 (C-4), 102.02 (C-12), 88.12 (C-5), 81.07 (C-6), 68.14 (C-16), 52.54 (C-1), 44.33 (C-7), 37.36 (C-10), 36.37 (C-3), 34.63 (C-11), 31.41 (C-17), 30.86 (C-11), 26.12 (C-15), 24.62 (C-2), 24.33 (C-8), 20.34 (C-14), 12.95 (C-13).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4624 (2)0.8858 (2)0.7096 (2)0.0219 (6)
H10.49710.98250.67590.026*
C20.5821 (3)0.8288 (3)0.8003 (2)0.0240 (5)
H2A0.56670.72240.81420.029*
H2B0.67560.84040.75580.029*
C30.5930 (2)0.9028 (3)0.9323 (2)0.0254 (5)
H3A0.61881.00720.91960.030*
H3B0.67170.85610.98280.030*
C40.4535 (2)0.8946 (3)1.0112 (2)0.0236 (6)
C50.2721 (2)0.7966 (3)0.8734 (2)0.0193 (5)
H50.25840.70470.82170.023*
C60.3193 (2)0.9184 (3)0.7817 (2)0.0199 (4)
C70.1958 (2)0.9600 (3)0.6879 (2)0.0221 (5)
H70.22311.05580.64760.027*
C80.1822 (3)0.8494 (3)0.5770 (2)0.0293 (6)
H8A0.15530.75230.61260.035*
H8B0.10460.88120.51680.035*
C90.3227 (3)0.8356 (3)0.5027 (2)0.0286 (6)
H9A0.31010.76400.43120.034*
H9B0.34720.93170.46380.034*
C100.4453 (3)0.7860 (3)0.5903 (2)0.0268 (6)
H100.42300.68470.62150.032*
C110.0559 (3)0.9877 (3)0.7641 (2)0.0246 (5)
H110.07581.07410.82140.030*
C120.0223 (3)0.8610 (3)0.8544 (2)0.0230 (5)
H12−0.06160.88980.90920.028*
C13−0.0724 (3)1.0314 (3)0.6780 (3)0.0347 (6)
H13A−0.10370.94650.62660.052*
H13B−0.04361.11100.61960.052*
H13C−0.15201.06470.73270.052*
C140.5866 (3)0.7794 (4)0.5130 (3)0.0378 (7)
H14A0.57100.72320.43310.057*
H14B0.66130.73170.56580.057*
H14C0.61730.87920.49110.057*
C150.4802 (3)0.8852 (3)1.1564 (2)0.0318 (7)
H15A0.54600.96381.18320.048*
H15B0.52310.78981.17760.048*
H15C0.38860.89591.20220.048*
C16−0.0657 (3)0.6166 (3)0.8603 (2)0.0281 (6)
H16A−0.16150.63950.89660.034*
H16B0.00260.60170.93330.034*
C17−0.0743 (3)0.4798 (3)0.7792 (3)0.0290 (6)
H17A−0.13260.49950.70030.035*
H17B−0.12270.40140.82920.035*
Br10.11699 (3)0.41341 (4)0.72890 (3)0.04547 (10)
O10.37137 (18)0.76784 (19)0.97365 (16)0.0221 (4)
O20.34641 (18)1.05261 (18)0.85662 (16)0.0241 (4)
O30.3660 (2)1.02082 (18)0.99572 (17)0.0234 (4)
O40.13965 (17)0.82985 (18)0.93755 (15)0.0225 (4)
O5−0.01788 (17)0.73579 (18)0.78053 (15)0.0235 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0195 (11)0.0211 (16)0.0252 (11)−0.0027 (9)0.0061 (9)0.0001 (10)
C20.0186 (12)0.0237 (12)0.0298 (13)0.0011 (10)0.0059 (10)−0.0033 (11)
C30.0193 (10)0.0246 (12)0.0322 (12)−0.0011 (13)0.0004 (9)−0.0026 (14)
C40.0208 (11)0.0207 (15)0.0292 (12)0.0039 (11)−0.0004 (9)−0.0050 (11)
C50.0199 (12)0.0195 (12)0.0185 (12)−0.0010 (10)−0.0003 (10)0.0001 (10)
C60.0187 (9)0.0162 (9)0.0250 (11)−0.0016 (13)0.0032 (8)−0.0007 (13)
C70.0211 (11)0.0202 (12)0.0250 (13)−0.0024 (9)0.0015 (10)0.0066 (10)
C80.0266 (14)0.0357 (13)0.0255 (13)−0.0069 (11)0.0003 (11)0.0059 (12)
C90.0343 (15)0.0308 (14)0.0206 (13)−0.0052 (11)0.0046 (11)0.0010 (11)
C100.0322 (14)0.0241 (12)0.0243 (13)−0.0034 (11)0.0078 (11)−0.0021 (11)
C110.0199 (12)0.0233 (12)0.0307 (14)−0.0003 (10)−0.0024 (11)0.0005 (11)
C120.0174 (11)0.0239 (11)0.0277 (13)−0.0015 (9)0.0029 (10)−0.0020 (10)
C130.0219 (13)0.0359 (16)0.0463 (17)0.0016 (11)−0.0030 (12)0.0072 (14)
C140.0356 (16)0.0446 (17)0.0331 (15)0.0036 (13)0.0099 (13)−0.0098 (13)
C150.0280 (12)0.0380 (19)0.0294 (13)0.0083 (11)−0.0025 (10)−0.0077 (12)
C160.0265 (13)0.0291 (14)0.0287 (14)−0.0081 (10)0.0059 (11)0.0050 (11)
C170.0243 (12)0.0301 (13)0.0326 (14)−0.0061 (11)0.0003 (11)0.0075 (11)
Br10.03348 (15)0.03086 (14)0.0721 (2)0.00014 (15)0.00489 (12)−0.00932 (17)
O10.0188 (9)0.0213 (9)0.0262 (10)0.0004 (7)−0.0008 (7)0.0009 (8)
O20.0249 (9)0.0177 (8)0.0296 (10)−0.0009 (7)−0.0010 (8)−0.0022 (7)
O30.0239 (9)0.0236 (10)0.0228 (9)0.0051 (7)0.0001 (7)−0.0055 (8)
O40.0188 (8)0.0270 (9)0.0219 (8)−0.0001 (7)0.0026 (7)0.0006 (7)
O50.0195 (8)0.0254 (9)0.0255 (9)−0.0045 (7)0.0014 (7)0.0030 (7)

Geometric parameters (Å, °)

C1—C101.536 (3)C9—H9B0.9900
C1—C21.538 (3)C10—C141.539 (3)
C1—C61.556 (3)C10—H101.0000
C1—H11.0000C11—C121.515 (3)
C2—C31.520 (3)C11—C131.533 (4)
C2—H2A0.9900C11—H111.0000
C2—H2B0.9900C12—O41.410 (3)
C3—C41.535 (3)C12—O51.420 (3)
C3—H3A0.9900C12—H121.0000
C3—H3B0.9900C13—H13A0.9800
C4—O31.416 (3)C13—H13B0.9800
C4—O11.435 (3)C13—H13C0.9800
C4—C151.517 (3)C14—H14A0.9800
C5—O11.404 (3)C14—H14B0.9800
C5—O41.433 (3)C14—H14C0.9800
C5—C61.523 (3)C15—H15A0.9800
C5—H51.0000C15—H15B0.9800
C6—O21.467 (3)C15—H15C0.9800
C6—C71.541 (3)C16—O51.434 (3)
C7—C81.528 (4)C16—C171.502 (4)
C7—C111.543 (4)C16—H16A0.9900
C7—H71.0000C16—H16B0.9900
C8—C91.522 (4)C17—Br11.949 (3)
C8—H8A0.9900C17—H17A0.9900
C8—H8B0.9900C17—H17B0.9900
C9—C101.517 (4)O2—O31.472 (2)
C9—H9A0.9900
C10—C1—C2110.89 (19)C9—C10—C1111.9 (2)
C10—C1—C6114.27 (19)C9—C10—C14110.0 (2)
C2—C1—C6112.98 (18)C1—C10—C14110.7 (2)
C10—C1—H1106.0C9—C10—H10108.0
C2—C1—H1106.0C1—C10—H10108.0
C6—C1—H1106.0C14—C10—H10108.0
C3—C2—C1115.91 (19)C12—C11—C13113.0 (2)
C3—C2—H2A108.3C12—C11—C7111.41 (19)
C1—C2—H2A108.3C13—C11—C7113.7 (2)
C3—C2—H2B108.3C12—C11—H11106.0
C1—C2—H2B108.3C13—C11—H11106.0
H2A—C2—H2B107.4C7—C11—H11106.0
C2—C3—C4113.6 (2)O4—C12—O5111.26 (19)
C2—C3—H3A108.8O4—C12—C11111.38 (19)
C4—C3—H3A108.8O5—C12—C11109.76 (19)
C2—C3—H3B108.8O4—C12—H12108.1
C4—C3—H3B108.8O5—C12—H12108.1
H3A—C3—H3B107.7C11—C12—H12108.1
O3—C4—O1108.64 (17)C11—C13—H13A109.5
O3—C4—C15104.26 (19)C11—C13—H13B109.5
O1—C4—C15107.6 (2)H13A—C13—H13B109.5
O3—C4—C3112.7 (2)C11—C13—H13C109.5
O1—C4—C3110.2 (2)H13A—C13—H13C109.5
C15—C4—C3113.08 (19)H13B—C13—H13C109.5
O1—C5—O4105.13 (17)C10—C14—H14A109.5
O1—C5—C6113.71 (18)C10—C14—H14B109.5
O4—C5—C6112.52 (18)H14A—C14—H14B109.5
O1—C5—H5108.4C10—C14—H14C109.5
O4—C5—H5108.4H14A—C14—H14C109.5
C6—C5—H5108.4H14B—C14—H14C109.5
O2—C6—C5109.27 (16)C4—C15—H15A109.5
O2—C6—C7104.4 (2)C4—C15—H15B109.5
C5—C6—C7110.62 (18)H15A—C15—H15B109.5
O2—C6—C1105.43 (17)C4—C15—H15C109.5
C5—C6—C1114.0 (2)H15A—C15—H15C109.5
C7—C6—C1112.44 (17)H15B—C15—H15C109.5
C8—C7—C6111.4 (2)O5—C16—C17109.00 (18)
C8—C7—C11115.0 (2)O5—C16—H16A109.9
C6—C7—C11110.25 (19)C17—C16—H16A109.9
C8—C7—H7106.6O5—C16—H16B109.9
C6—C7—H7106.6C17—C16—H16B109.9
C11—C7—H7106.6H16A—C16—H16B108.3
C9—C8—C7111.3 (2)C16—C17—Br1111.10 (18)
C9—C8—H8A109.4C16—C17—H17A109.4
C7—C8—H8A109.4Br1—C17—H17A109.4
C9—C8—H8B109.4C16—C17—H17B109.4
C7—C8—H8B109.4Br1—C17—H17B109.4
H8A—C8—H8B108.0H17A—C17—H17B108.0
C10—C9—C8111.6 (2)C5—O1—C4113.13 (18)
C10—C9—H9A109.3C6—O2—O3111.59 (16)
C8—C9—H9A109.3C4—O3—O2109.64 (16)
C10—C9—H9B109.3C12—O4—C5115.10 (17)
C8—C9—H9B109.3C12—O5—C16112.52 (17)
H9A—C9—H9B108.0
C10—C1—C2—C3−170.2 (2)C2—C1—C10—C14−59.8 (3)
C6—C1—C2—C3−40.4 (3)C6—C1—C10—C14171.1 (2)
C1—C2—C3—C457.3 (3)C8—C7—C11—C1275.3 (3)
C2—C3—C4—O3−94.8 (3)C6—C7—C11—C12−51.6 (3)
C2—C3—C4—O126.8 (3)C8—C7—C11—C13−53.7 (3)
C2—C3—C4—C15147.3 (2)C6—C7—C11—C13179.4 (2)
O1—C5—C6—O2−56.7 (2)C13—C11—C12—O4−176.3 (2)
O4—C5—C6—O262.7 (2)C7—C11—C12—O454.3 (3)
O1—C5—C6—C7−171.20 (19)C13—C11—C12—O560.0 (3)
O4—C5—C6—C7−51.8 (3)C7—C11—C12—O5−69.4 (2)
O1—C5—C6—C160.9 (2)O5—C16—C17—Br168.7 (2)
O4—C5—C6—C1−179.69 (19)O4—C5—O1—C4−93.8 (2)
C10—C1—C6—O2−159.21 (19)C6—C5—O1—C429.7 (3)
C2—C1—C6—O272.8 (2)O3—C4—O1—C532.8 (2)
C10—C1—C6—C580.9 (2)C15—C4—O1—C5145.10 (19)
C2—C1—C6—C5−47.1 (3)C3—C4—O1—C5−91.2 (2)
C10—C1—C6—C7−46.0 (3)C5—C6—O2—O318.1 (2)
C2—C1—C6—C7−174.0 (2)C7—C6—O2—O3136.50 (16)
O2—C6—C7—C8163.64 (17)C1—C6—O2—O3−104.81 (18)
C5—C6—C7—C8−78.9 (2)O1—C4—O3—O2−72.2 (2)
C1—C6—C7—C849.8 (3)C15—C4—O3—O2173.27 (17)
O2—C6—C7—C11−67.5 (2)C3—C4—O3—O250.3 (2)
C5—C6—C7—C1150.0 (3)C6—O2—O3—C442.6 (2)
C1—C6—C7—C11178.7 (2)O5—C12—O4—C565.7 (2)
C6—C7—C8—C9−56.9 (3)C11—C12—O4—C5−57.1 (2)
C11—C7—C8—C9176.8 (2)O1—C5—O4—C12−179.24 (18)
C7—C8—C9—C1059.5 (3)C6—C5—O4—C1256.5 (2)
C8—C9—C10—C1−54.3 (3)O4—C12—O5—C1662.4 (2)
C8—C9—C10—C14−177.7 (2)C11—C12—O5—C16−173.86 (19)
C2—C1—C10—C9177.06 (19)C17—C16—O5—C12−167.5 (2)
C6—C1—C10—C948.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15B···O2i0.982.503.434 (3)159
C16—H16A···O3ii0.992.463.285 (3)141
C17—H17B···O4ii0.992.503.282 (3)136

Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) −x, y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2039).

References

  • Basco, L. K., Dechy-Cabaret, O., Ndounga, M., Meche, F. S., Robert, A. & Meunier, B. (2001). Antimicrob. Agents Chemother.45, 1886–1888. [PMC free article] [PubMed]
  • Bruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Grelepois, F., Grellier, P., Bonnet-Delpon, D. & Begue, J. (2005). ChemBioChem, 6, 648–652. [PubMed]
  • Gupta, S., Thapar, M. M., Mariga, S. T., Wernsdorfer, W. H. & Bjōrkman, A. (2002). Exp. Parasitol.100, 28–35. [PubMed]
  • Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Sreevidya, T. V. (2008a). Acta Cryst. E64, o89–o90. [PMC free article] [PubMed]
  • Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Sreevidya, T. V. (2008b). Acta Cryst. E64, o585–o586. [PMC free article] [PubMed]
  • Keller, E. (1999). SCHAKAL99 University of Freiburg, Germany.
  • Kuhn, T. & Wang, Y. (2008). Fortschr. Arzneimittelforsch 66, 383–422. [PubMed]
  • Li, Y., Zhu, Y., Jiang, H., Pan, J., Wu, G., Wu, J., Shi, Y., Yang, J. & Wu, B. (2000). J. Med. Chem.43, 1635–1640. [PubMed]
  • Luo, X., Yeh, H. J. C., Brossi, A., Flippen-Anderson, J. L. & Gilardi, R. (1984). Helv. Chim. Acta, 67, 1515–1522.
  • Ploypradith, P. (2004). Acta Trop.89, 329–342. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Walsh, J. J., Coughlan, D., Heneghan, N., Gaynor, C. & Bell, A. (2007). Bioorg. Med. Chem. Lett.17, 3599–3602. [PubMed]
  • World Health Organisation (2008). World malaria report. http://www.who.int/malaria/publications/atoz/9789241563697/en/index.html.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography