PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2187.
Published online 2010 July 31. doi:  10.1107/S160053681003014X
PMCID: PMC3007539

2-(3-Meth­oxy­phen­oxy)pyrimidine

Abstract

In the title compound, C11H10N2O2, the benzene ring faces towards one of the pyrimidine N atoms, and is almost orthogonal to the plane through the pyrimidine ring [dihedral angle = 84.40 (14)°]. In the crystal, the presence of C—H(...)π and π–π [centroid–centroid separation = 3.7658 (18) Å] inter­actions leads to a supra­molecular array in the ac plane. The layers thus formed inter­digitate along the b axis.

Related literature

For background to the fluorescence properties of compounds related to the title compound, see: Kawai et al. (2001 [triangle]); Abdullah (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2187-scheme1.jpg

Experimental

Crystal data

  • C11H10N2O2
  • M r = 202.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2187-efi1.jpg
  • a = 8.8120 (16) Å
  • b = 18.215 (3) Å
  • c = 7.2094 (10) Å
  • β = 119.380 (2)°
  • V = 1008.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.40 × 0.30 × 0.08 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.889, T max = 1.000
  • 4725 measured reflections
  • 1165 independent reflections
  • 897 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.086
  • S = 1.02
  • 1165 reflections
  • 138 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.10 e Å−3
  • Δρmin = −0.10 e Å−3
  • Absolute structure: nd

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003014X/hb5584sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003014X/hb5584Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AZ thanks the Ministry of Higher Education, Malaysia, for research grants (PS341/2010, FP047/2008 C and RG027/09AFR). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

Interest in the title compound stems from interesting fluorescence properties of related compounds (Kawai et al. 2001; Abdullah, 2005). In (I), the least-squares plane through the pyrimidine ring bisects the plane through the benzene ring with the C5 and C8 atoms of the latter lying in the plane; the dihedral angle between the planes is 84.40 (14) °. The benzene ring lies to one side of the pyrimidine ring, being proximate to the N1 atom. The methoxy group is almost co-planar with the benzene ring to which is bonded as seen in the value of the C11–O2–C7–C6 torsion angle of 171.7 (2) °.

In the crystal, the presence of C–H···π interactions, formed between pyrimidine-H atoms and benzene rings, and π–π interactions [centroid-centroid separation = 3.7658 (18)Å], formed between pyrimidine rings, leads to the formation of layers in the ac plane, Fig. 2 and Table 1. Layers comprise alternating rows of pyrimidine and benzene molecules, and inter-digitate along the b axis as shown in Fig. 3.

Experimental

3-Methoxyphenol (2.2 ml, 20 mmol) was mixed with sodium hydroxide (0.8 g, 20 mmol) in several drops of water. The water was then evaporated. The paste was heated with 2-chloropyrimidine (2.3 g, 20 mmol) at 423–433 K for 5 h. The product was dissolved in water and the solution extracted with chloroform. The chloroform phase was dried over sodium sulfate; the evaporation of the solvent gave well shaped colourless prisms of (I).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). In the absence of significant anomalous scattering effects, 985 Friedel pairs were averaged in the final refinement.

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
Fig. 2.
Supramolecular layer in (I) mediated by C–H···π and π–π interactions, shown as orange and purple dashed lines, respectively.
Fig. 3.
Unit-cell contents shown in projection down the c axis in (I), highlighting the stacking of layers. The C–H···π and π–π interactions are shown as orange and purple dashed lines, respectively. ...

Crystal data

C11H10N2O2F(000) = 424
Mr = 202.21Dx = 1.332 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1361 reflections
a = 8.8120 (16) Åθ = 2.2–21.9°
b = 18.215 (3) ŵ = 0.09 mm1
c = 7.2094 (10) ÅT = 293 K
β = 119.380 (2)°Prism, colourless
V = 1008.4 (3) Å30.40 × 0.30 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer1165 independent reflections
Radiation source: fine-focus sealed tube897 reflections with I > 2σ(I)
graphiteRint = 0.033
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.889, Tmax = 1.000k = −23→23
4725 measured reflectionsl = −9→9

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032w = 1/[σ2(Fo2) + (0.0443P)2 + 0.0614P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.10 e Å3
1165 reflectionsΔρmin = −0.10 e Å3
138 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.016 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: nd
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.5000 (2)0.02433 (8)0.5000 (3)0.0629 (5)
O20.7604 (2)0.21319 (8)0.3071 (3)0.0628 (5)
N10.2553 (3)0.09456 (10)0.4018 (3)0.0595 (5)
N20.2520 (3)−0.03621 (10)0.4056 (4)0.0655 (6)
C10.3265 (3)0.02912 (11)0.4325 (4)0.0510 (5)
C20.0840 (4)0.09409 (16)0.3359 (5)0.0756 (8)
H20.02620.13870.31290.091*
C3−0.0084 (4)0.03096 (19)0.3015 (5)0.0828 (9)
H3−0.12720.03140.25550.099*
C40.0819 (4)−0.03306 (17)0.3379 (5)0.0789 (8)
H40.0213−0.07700.31410.095*
C50.5948 (3)0.09030 (11)0.5548 (4)0.0531 (6)
C60.6335 (3)0.12134 (10)0.4098 (4)0.0484 (5)
H60.59540.09950.27760.058*
C70.7304 (3)0.18570 (11)0.4623 (3)0.0488 (5)
C80.7882 (3)0.21731 (13)0.6603 (4)0.0624 (6)
H80.85270.26050.69700.075*
C90.7481 (4)0.18335 (17)0.8027 (4)0.0771 (8)
H90.78700.20450.93590.093*
C100.6533 (3)0.11978 (16)0.7543 (4)0.0697 (7)
H100.62920.09730.85290.084*
C110.8382 (4)0.28395 (15)0.3411 (5)0.0868 (9)
H11A0.84430.29860.21690.130*
H11B0.95350.28230.46150.130*
H11C0.76920.31870.36760.130*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0614 (11)0.0435 (8)0.0919 (13)0.0088 (7)0.0438 (11)0.0096 (8)
O20.0722 (11)0.0520 (9)0.0643 (10)−0.0123 (8)0.0335 (8)−0.0019 (8)
N10.0551 (11)0.0530 (11)0.0691 (12)0.0075 (9)0.0294 (10)−0.0016 (10)
N20.0773 (15)0.0501 (12)0.0735 (14)−0.0070 (10)0.0403 (12)−0.0005 (10)
C10.0553 (14)0.0481 (12)0.0565 (14)0.0034 (10)0.0329 (12)0.0045 (10)
C20.0570 (16)0.0763 (17)0.087 (2)0.0111 (14)0.0299 (15)−0.0078 (15)
C30.0562 (17)0.101 (2)0.087 (2)−0.0074 (16)0.0322 (15)−0.0199 (17)
C40.076 (2)0.0799 (19)0.084 (2)−0.0262 (17)0.0412 (16)−0.0136 (15)
C50.0468 (12)0.0451 (12)0.0666 (14)0.0094 (9)0.0273 (11)0.0057 (10)
C60.0480 (12)0.0415 (10)0.0535 (12)0.0036 (9)0.0231 (10)−0.0013 (9)
C70.0427 (11)0.0464 (10)0.0546 (13)0.0040 (9)0.0219 (10)0.0008 (10)
C80.0555 (13)0.0619 (13)0.0614 (15)−0.0069 (11)0.0223 (12)−0.0156 (12)
C90.0779 (19)0.097 (2)0.0549 (15)−0.0069 (16)0.0315 (14)−0.0186 (15)
C100.0733 (17)0.0811 (18)0.0651 (17)0.0059 (14)0.0419 (14)0.0032 (14)
C110.103 (2)0.0589 (16)0.088 (2)−0.0223 (14)0.0389 (19)0.0037 (14)

Geometric parameters (Å, °)

O1—C11.361 (3)C5—C61.372 (3)
O1—C51.405 (3)C5—C101.377 (3)
O2—C71.365 (3)C6—C71.389 (3)
O2—C111.424 (3)C6—H60.9300
N1—C11.314 (3)C7—C81.384 (3)
N1—C21.342 (3)C8—C91.384 (4)
N2—C11.327 (3)C8—H80.9300
N2—C41.330 (4)C9—C101.369 (4)
C2—C31.360 (4)C9—H90.9300
C2—H20.9300C10—H100.9300
C3—C41.363 (4)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—H40.9300C11—H11C0.9600
C1—O1—C5117.01 (16)C5—C6—H6120.3
C7—O2—C11117.50 (19)C7—C6—H6120.3
C1—N1—C2114.5 (2)O2—C7—C8124.9 (2)
C1—N2—C4113.7 (2)O2—C7—C6115.23 (18)
N1—C1—N2128.9 (2)C8—C7—C6119.9 (2)
N1—C1—O1118.57 (19)C7—C8—C9118.7 (2)
N2—C1—O1112.54 (19)C7—C8—H8120.7
N1—C2—C3122.6 (3)C9—C8—H8120.7
N1—C2—H2118.7C10—C9—C8122.4 (3)
C3—C2—H2118.7C10—C9—H9118.8
C2—C3—C4116.6 (3)C8—C9—H9118.8
C2—C3—H3121.7C9—C10—C5117.7 (2)
C4—C3—H3121.7C9—C10—H10121.2
N2—C4—C3123.6 (3)C5—C10—H10121.2
N2—C4—H4118.2O2—C11—H11A109.5
C3—C4—H4118.2O2—C11—H11B109.5
C6—C5—C10122.0 (2)H11A—C11—H11B109.5
C6—C5—O1118.3 (2)O2—C11—H11C109.5
C10—C5—O1119.6 (2)H11A—C11—H11C109.5
C5—C6—C7119.3 (2)H11B—C11—H11C109.5
C2—N1—C1—N20.6 (4)C10—C5—C6—C7−2.0 (3)
C2—N1—C1—O1−179.8 (2)O1—C5—C6—C7−178.59 (19)
C4—N2—C1—N10.1 (4)C11—O2—C7—C8−8.0 (3)
C4—N2—C1—O1−179.5 (2)C11—O2—C7—C6171.7 (2)
C5—O1—C1—N16.9 (3)C5—C6—C7—O2−179.02 (19)
C5—O1—C1—N2−173.5 (2)C5—C6—C7—C80.7 (3)
C1—N1—C2—C3−0.7 (4)O2—C7—C8—C9180.0 (2)
N1—C2—C3—C40.2 (5)C6—C7—C8—C90.3 (3)
C1—N2—C4—C3−0.8 (4)C7—C8—C9—C10−0.1 (4)
C2—C3—C4—N20.6 (5)C8—C9—C10—C5−1.1 (4)
C1—O1—C5—C6−100.4 (2)C6—C5—C10—C92.1 (4)
C1—O1—C5—C1082.8 (3)O1—C5—C10—C9178.7 (2)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg2i0.932.893.710 (4)148

Symmetry codes: (i) x−1, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5584).

References

  • Abdullah, Z. (2005). Int. J. Chem. Sci 3, 9–15.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc 11, 23–32.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography