PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2180.
Published online 2010 July 31. doi:  10.1107/S160053681002979X
PMCID: PMC3007537

8-Quinolyl 5-(dimethyl­amino)­naphthalene-1-sulfonate

Abstract

In the title compound, C21H18N2O3S, the dihedral angle between the naphthalene and quinoline ring systems is 55.53 (2)°, and the torsion angle involving the connecting C—S—O—C atoms is 87.60 (3)°. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds connect mol­ecules into chains along [100] and there are π–π stacking inter­actions between pairs of chains with a centroid–centroid distance of 3.5485 (15) Å.

Related literature

For background information and the applications of compounds containing the 5-(dimethyl­amino)­naphthalene-1-sulfonyl group, see: Li et al. (1975 [triangle]); Walkup & Imperiali (1997 [triangle]); Chen & Chen (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2180-scheme1.jpg

Experimental

Crystal data

  • C21H18N2O3S
  • M r = 378.43
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2180-efi1.jpg
  • a = 9.5556 (12) Å
  • b = 10.1237 (12) Å
  • c = 11.4182 (14) Å
  • α = 108.736 (2)°
  • β = 100.426 (2)°
  • γ = 111.860 (2)°
  • V = 912.30 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 298 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.961, T max = 0.980
  • 5269 measured reflections
  • 3526 independent reflections
  • 2959 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.132
  • S = 1.04
  • 3526 reflections
  • 246 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002979X/lh5093sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002979X/lh5093Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Science Technology Research Programme of the Education Office of Hubei Province (grant No. Q20092503) for financial support.

supplementary crystallographic information

Comment

The dansyl fluorophore (5-(dimethylamino)naphthalene-1-sulfonyl) is characterized by a charge transfer excited state exhibiting solvatochromism and high emission quantum yields (Li et al., 1975). These characteristics, together with the synthetic flexibility of the sulfonic acid group, have led the dansyl fluorophore to be a core-structure present in many fluorescent sensors and labels for the detection of both metal cations and anions (Walkup & Imperiali, 1997; Chen & Chen, 2004). We are interested in designing fluorescent drug or ligand analogs that are expected to bind to hydrophobic sites in proteins or membranes. With this mind, the title compound, (I), was prepared and we report the crystal stucture herein.

In the molecular structure (Fig. 1), the dihedral angle between the naphthalene and quinoline ring systems is 55.53 (2)°, and these aromatic ring ststems are connected by the atoms C8—S1—O3—C13, giving a torsion angle of 87.60 (3)°. In the crystal structure (Fig. 2) molecules are linked by weak intermolecular C—H···O hydrogen bonds forming 1-D chains along [100]. Pairs of chains are connected by weak π–π stacking interactions with Cg···Cg(2-x, -y, -z) = 3.5485 (15), where Cg is the centroid defined by ring atoms C13-C17/C21.

Experimental

8-Hydroxyquinolin (0.16 g, 1 mmol) was added to a stirred solution of dansyl chloride (0.27 g, 1 mmol) in dry acetone (40 ml). The reaction mixture was allowed to stir for 12 hr at 293 K. The solvent was evaporated and the residue was purified by column chromatography (petroleun ether-ethyl acetate,1:4 v/v) to afford the title compound as a yellow solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

All H atoms were placed in idealized positions [CH(methyl)=0.96 Å, and 0.93 Å (aromatic),with Uiso(H)= 1.5Ueq(methyl C) 1.2Ueq(other C).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.

Crystal data

C21H18N2O3SZ = 2
Mr = 378.43F(000) = 396
Triclinic, P1Dx = 1.378 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5556 (12) ÅCell parameters from 2502 reflections
b = 10.1237 (12) Åθ = 1.7–22.5°
c = 11.4182 (14) ŵ = 0.20 mm1
α = 108.736 (2)°T = 298 K
β = 100.426 (2)°Block, yellow
γ = 111.860 (2)°0.20 × 0.20 × 0.20 mm
V = 912.30 (19) Å3

Data collection

Bruker SMART CCD diffractometer3526 independent reflections
Radiation source: fine-focus sealed tube2959 reflections with I > 2σ(I)
graphiteRint = 0.054
[var phi] and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)h = −11→11
Tmin = 0.961, Tmax = 0.980k = −12→12
5269 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0622P)2 + 0.1786P] where P = (Fo2 + 2Fc2)/3
3526 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3811 (4)−0.3563 (4)0.4404 (3)0.0808 (9)
H1A0.3092−0.31110.43570.121*
H1B0.3945−0.37390.51850.121*
H1C0.3375−0.45460.36450.121*
C20.6414 (4)−0.3214 (4)0.4384 (3)0.0776 (8)
H2A0.5946−0.41500.35770.116*
H2B0.6564−0.34800.51160.116*
H2C0.7433−0.24900.44190.116*
C30.5317 (3)−0.1772 (2)0.3569 (2)0.0460 (5)
C40.4046 (3)−0.2372 (3)0.2452 (2)0.0549 (6)
H40.3129−0.32870.22510.066*
C50.4103 (3)−0.1632 (3)0.1607 (2)0.0543 (6)
H50.3217−0.20590.08570.065*
C60.5421 (3)−0.0303 (3)0.1855 (2)0.0469 (5)
H60.54520.01330.12510.056*
C70.6746 (2)0.0422 (2)0.30273 (19)0.0386 (4)
C80.8158 (2)0.1871 (2)0.34276 (19)0.0407 (5)
C90.9371 (3)0.2558 (3)0.4599 (2)0.0498 (5)
H91.02770.34910.48180.060*
C100.9242 (3)0.1849 (3)0.5467 (2)0.0593 (6)
H101.00520.23280.62790.071*
C110.7943 (3)0.0466 (3)0.5135 (2)0.0550 (6)
H110.78780.00160.57290.066*
C120.6684 (2)−0.0309 (2)0.39138 (19)0.0423 (5)
C131.0085 (2)0.1803 (2)0.12403 (19)0.0406 (4)
C141.0695 (3)0.1102 (3)0.1871 (2)0.0514 (5)
H141.01280.05810.23020.062*
C151.2188 (3)0.1174 (3)0.1866 (2)0.0616 (6)
H151.26220.07180.23150.074*
C161.3009 (3)0.1902 (3)0.1213 (2)0.0599 (6)
H161.39990.19420.12210.072*
C171.2370 (3)0.2596 (3)0.0523 (2)0.0487 (5)
C181.3112 (3)0.3301 (3)−0.0238 (2)0.0623 (7)
H181.40730.3321−0.03060.075*
C191.2415 (3)0.3946 (3)−0.0863 (3)0.0643 (7)
H191.28910.4411−0.13660.077*
C201.0978 (3)0.3904 (3)−0.0744 (2)0.0584 (6)
H201.05330.4377−0.11640.070*
C211.0888 (2)0.2580 (2)0.05481 (18)0.0399 (4)
N10.5359 (2)−0.2493 (2)0.4443 (2)0.0572 (5)
N21.0200 (2)0.3242 (2)−0.00774 (17)0.0479 (4)
O10.6994 (2)0.2943 (2)0.18886 (19)0.0656 (5)
O20.9897 (2)0.42788 (18)0.30555 (16)0.0607 (4)
O30.85533 (16)0.16883 (17)0.11789 (13)0.0442 (4)
S10.84187 (7)0.28769 (6)0.24117 (5)0.04560 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.084 (2)0.085 (2)0.118 (2)0.0459 (17)0.0604 (19)0.073 (2)
C20.081 (2)0.089 (2)0.100 (2)0.0529 (17)0.0357 (17)0.0648 (19)
C30.0476 (12)0.0491 (12)0.0530 (12)0.0252 (10)0.0223 (10)0.0291 (10)
C40.0446 (13)0.0498 (13)0.0624 (14)0.0144 (10)0.0138 (11)0.0260 (11)
C50.0417 (12)0.0600 (14)0.0521 (13)0.0197 (11)0.0044 (10)0.0239 (11)
C60.0462 (12)0.0550 (13)0.0448 (11)0.0258 (10)0.0115 (10)0.0268 (10)
C70.0400 (11)0.0433 (11)0.0403 (10)0.0227 (9)0.0167 (9)0.0212 (9)
C80.0438 (11)0.0435 (11)0.0417 (11)0.0228 (9)0.0208 (9)0.0198 (9)
C90.0454 (12)0.0483 (12)0.0469 (12)0.0162 (10)0.0157 (10)0.0165 (10)
C100.0515 (14)0.0681 (15)0.0400 (12)0.0201 (12)0.0035 (10)0.0171 (11)
C110.0587 (14)0.0654 (15)0.0412 (12)0.0257 (12)0.0126 (10)0.0289 (11)
C120.0443 (12)0.0480 (11)0.0427 (11)0.0245 (10)0.0167 (9)0.0240 (9)
C130.0396 (11)0.0424 (11)0.0377 (10)0.0196 (9)0.0132 (9)0.0138 (9)
C140.0632 (15)0.0557 (13)0.0456 (12)0.0330 (12)0.0221 (11)0.0249 (10)
C150.0694 (17)0.0730 (16)0.0583 (14)0.0493 (14)0.0174 (13)0.0295 (13)
C160.0451 (13)0.0693 (15)0.0659 (15)0.0349 (12)0.0163 (12)0.0208 (13)
C170.0404 (11)0.0451 (11)0.0524 (12)0.0182 (9)0.0171 (10)0.0124 (10)
C180.0472 (14)0.0584 (14)0.0719 (16)0.0169 (11)0.0325 (12)0.0189 (13)
C190.0682 (17)0.0630 (15)0.0685 (16)0.0237 (13)0.0401 (14)0.0347 (13)
C200.0682 (16)0.0602 (14)0.0589 (14)0.0313 (13)0.0294 (12)0.0334 (12)
C210.0376 (11)0.0390 (10)0.0380 (10)0.0170 (9)0.0127 (8)0.0114 (8)
N10.0615 (13)0.0614 (12)0.0719 (13)0.0315 (10)0.0320 (10)0.0466 (11)
N20.0497 (11)0.0542 (11)0.0505 (10)0.0262 (9)0.0226 (9)0.0291 (9)
O10.0683 (11)0.0834 (12)0.0966 (13)0.0545 (10)0.0485 (10)0.0642 (11)
O20.0660 (11)0.0423 (8)0.0713 (10)0.0186 (8)0.0341 (9)0.0231 (8)
O30.0389 (8)0.0519 (8)0.0446 (8)0.0201 (7)0.0182 (6)0.0227 (7)
S10.0499 (3)0.0456 (3)0.0582 (3)0.0270 (3)0.0298 (3)0.0300 (3)

Geometric parameters (Å, °)

C1—N11.454 (3)C10—H100.9300
C1—H1A0.9600C11—C121.412 (3)
C1—H1B0.9600C11—H110.9300
C1—H1C0.9600C13—C141.358 (3)
C2—N11.448 (3)C13—O31.411 (2)
C2—H2A0.9600C13—C211.415 (3)
C2—H2B0.9600C14—C151.403 (3)
C2—H2C0.9600C14—H140.9300
C3—C41.364 (3)C15—C161.360 (4)
C3—N11.417 (3)C15—H150.9300
C3—C121.433 (3)C16—C171.410 (3)
C4—C51.396 (3)C16—H160.9300
C4—H40.9300C17—C211.416 (3)
C5—C61.356 (3)C17—C181.418 (3)
C5—H50.9300C18—C191.353 (4)
C6—C71.413 (3)C18—H180.9300
C6—H60.9300C19—C201.391 (4)
C7—C121.430 (3)C19—H190.9300
C7—C81.434 (3)C20—N21.320 (3)
C8—C91.362 (3)C20—H200.9300
C8—S11.766 (2)C21—N21.363 (3)
C9—C101.396 (3)O1—S11.4188 (17)
C9—H90.9300O2—S11.4183 (17)
C10—C111.356 (3)O3—S11.5933 (15)
N1—C1—H1A109.5C11—C12—C3121.60 (18)
N1—C1—H1B109.5C7—C12—C3119.32 (18)
H1A—C1—H1B109.5C14—C13—O3120.52 (19)
N1—C1—H1C109.5C14—C13—C21122.3 (2)
H1A—C1—H1C109.5O3—C13—C21117.06 (17)
H1B—C1—H1C109.5C13—C14—C15119.3 (2)
N1—C2—H2A109.5C13—C14—H14120.3
N1—C2—H2B109.5C15—C14—H14120.3
H2A—C2—H2B109.5C16—C15—C14120.8 (2)
N1—C2—H2C109.5C16—C15—H15119.6
H2A—C2—H2C109.5C14—C15—H15119.6
H2B—C2—H2C109.5C15—C16—C17120.5 (2)
C4—C3—N1123.8 (2)C15—C16—H16119.7
C4—C3—C12119.17 (18)C17—C16—H16119.7
N1—C3—C12117.06 (19)C16—C17—C21119.7 (2)
C3—C4—C5120.9 (2)C16—C17—C18123.8 (2)
C3—C4—H4119.5C21—C17—C18116.5 (2)
C5—C4—H4119.5C19—C18—C17119.8 (2)
C6—C5—C4121.6 (2)C19—C18—H18120.1
C6—C5—H5119.2C17—C18—H18120.1
C4—C5—H5119.2C18—C19—C20119.0 (2)
C5—C6—C7120.30 (19)C18—C19—H19120.5
C5—C6—H6119.8C20—C19—H19120.5
C7—C6—H6119.8N2—C20—C19124.7 (2)
C6—C7—C12118.50 (18)N2—C20—H20117.6
C6—C7—C8125.16 (18)C19—C20—H20117.6
C12—C7—C8116.32 (18)N2—C21—C13119.30 (18)
C9—C8—C7122.78 (18)N2—C21—C17123.32 (19)
C9—C8—S1116.00 (16)C13—C21—C17117.37 (19)
C7—C8—S1121.22 (15)C3—N1—C2113.78 (19)
C8—C9—C10119.4 (2)C3—N1—C1116.1 (2)
C8—C9—H9120.3C2—N1—C1110.5 (2)
C10—C9—H9120.3C20—N2—C21116.59 (19)
C11—C10—C9120.4 (2)C13—O3—S1117.87 (12)
C11—C10—H10119.8O2—S1—O1119.57 (11)
C9—C10—H10119.8O2—S1—O3108.77 (8)
C10—C11—C12121.9 (2)O1—S1—O3104.37 (10)
C10—C11—H11119.0O2—S1—C8109.32 (10)
C12—C11—H11119.0O1—S1—C8110.89 (10)
C11—C12—C7119.01 (19)O3—S1—C8102.41 (8)
N1—C3—C4—C5−177.7 (2)C16—C17—C18—C19−179.7 (2)
C12—C3—C4—C53.9 (3)C21—C17—C18—C191.6 (3)
C3—C4—C5—C60.6 (4)C17—C18—C19—C200.1 (4)
C4—C5—C6—C7−3.7 (4)C18—C19—C20—N2−1.5 (4)
C5—C6—C7—C122.2 (3)C14—C13—C21—N2179.21 (19)
C5—C6—C7—C8−176.3 (2)O3—C13—C21—N23.3 (3)
C6—C7—C8—C9176.8 (2)C14—C13—C21—C170.5 (3)
C12—C7—C8—C9−1.7 (3)O3—C13—C21—C17−175.38 (17)
C6—C7—C8—S1−3.1 (3)C16—C17—C21—N2179.12 (19)
C12—C7—C8—S1178.40 (14)C18—C17—C21—N2−2.1 (3)
C7—C8—C9—C10−1.0 (3)C16—C17—C21—C13−2.2 (3)
S1—C8—C9—C10178.88 (17)C18—C17—C21—C13176.51 (18)
C8—C9—C10—C111.8 (4)C4—C3—N1—C2107.4 (3)
C9—C10—C11—C120.2 (4)C12—C3—N1—C2−74.3 (3)
C10—C11—C12—C7−3.0 (3)C4—C3—N1—C1−22.5 (3)
C10—C11—C12—C3179.9 (2)C12—C3—N1—C1155.8 (2)
C6—C7—C12—C11−175.00 (19)C19—C20—N2—C211.0 (4)
C8—C7—C12—C113.6 (3)C13—C21—N2—C20−177.77 (19)
C6—C7—C12—C32.2 (3)C17—C21—N2—C200.9 (3)
C8—C7—C12—C3−179.18 (17)C14—C13—O3—S182.5 (2)
C4—C3—C12—C11171.9 (2)C21—C13—O3—S1−101.55 (17)
N1—C3—C12—C11−6.6 (3)C13—O3—S1—O228.05 (16)
C4—C3—C12—C7−5.2 (3)C13—O3—S1—O1156.75 (14)
N1—C3—C12—C7176.32 (17)C13—O3—S1—C8−87.57 (15)
O3—C13—C14—C15177.12 (19)C9—C8—S1—O2−0.92 (19)
C21—C13—C14—C151.4 (3)C7—C8—S1—O2178.98 (15)
C13—C14—C15—C16−1.6 (4)C9—C8—S1—O1−134.83 (17)
C14—C15—C16—C17−0.2 (4)C7—C8—S1—O145.06 (19)
C15—C16—C17—C212.1 (3)C9—C8—S1—O3114.31 (17)
C15—C16—C17—C18−176.5 (2)C7—C8—S1—O3−65.80 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.932.523.411 (3)160

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5093).

References

  • Bruker (2007). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, C. & Chen, Q. (2004). Tetrahedron Lett.45, 3957–3960.
  • Li, Y., Chan, L., Tyer, L., Moody, R. T., Hirnel, C. M. & Hercules, D. M. (1975). J. Am. Chem. Soc.97, 3118–3126.
  • Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]
  • Walkup, G. K. & Imperiali, B. (1997). J. Am. Chem. Soc.119, 3443–3450.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography