PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m881.
Published online 2010 July 3. doi:  10.1107/S1600536810025481
PMCID: PMC3007536

Bis[2-(cyclo­pentyl­imino­meth­yl)-5-meth­oxy­phenolato]copper(II)

Abstract

The title compound, [Cu(C13H16NO2)2], is a mononuclear copper(II) complex derived from the Schiff base ligand 2-(cyclo­pentyl­imino­meth­yl)-5-meth­oxy­phenol and copper acetate. The CuII atom is four-coordinated by the phenolate O atoms and imine N atoms from two Schiff base ligands, in a highly distorted square-planar geometry. The O- and N-donor atoms are mutually trans and the dihedral angle between the two benzene rings is 55.8 (3)°.

Related literature

For background to complexes with Schiff bases, see: Hamaker et al. (2010 [triangle]); Wang et al. (2010 [triangle]); Mirkhani et al. (2010 [triangle]); Liu & Yang (2009 [triangle]); Keypour et al. (2009 [triangle]); Adhikary et al. (2009 [triangle]); Peng et al. (2009 [triangle]). For similar copper complexes, see: Friščić et al. (2002 [triangle]); Marsh & Spek (2001 [triangle]); Han et al. (2001 [triangle]); Akitsu & Einaga (2004 [triangle]); Dhar et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m881-scheme1.jpg

Experimental

Crystal data

  • [Cu(C13H16NO2)2]
  • M r = 500.08
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m881-efi1.jpg
  • a = 8.496 (1) Å
  • b = 14.054 (2) Å
  • c = 20.442 (2) Å
  • β = 100.236 (3)°
  • V = 2402.0 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.94 mm−1
  • T = 298 K
  • 0.23 × 0.21 × 0.21 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.812, T max = 0.826
  • 12222 measured reflections
  • 4333 independent reflections
  • 3131 reflections with I > 2σ(I)
  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.163
  • S = 1.00
  • 4333 reflections
  • 300 parameters
  • H-atom parameters constrained
  • Δρmax = 0.69 e Å−3
  • Δρmin = −1.16 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025481/sj5030sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025481/sj5030Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Scientific Research Foundation of Shaanxi University of Technology (project No. SLGQD0708) for financial support.

supplementary crystallographic information

Comment

Schiff bases are known to be versatile ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). A large number of complexes with Schiff bases have been reported because of their interesting structures and potential applications (Keypour et al., 2009; Adhikary et al., 2009; Peng et al., 2009). We report here the crystal structure of the title new copper complex with the Schiff base ligand 2-(cyclopentyliminomethyl)-5-methoxyphenol.

The Cu atom in the complex is four-coordinated by two phenolate O atoms and two imine N atoms from two Schiff base ligands, forming a distorted square planar geometry (Fig. 1). The dihedral angle between the C1-C6 and C14-C19 benzene rings is 55.8 (3)°. The bond lengths (Table 1) involving the Cu atom are comparable to those observed in similar copper complexes (Friščić et al., 2002; Marsh & Spek, 2001; Han et al., 2001; Akitsu & Einaga, 2004; Dhar et al., 2003).

Experimental

4-Methoxysalicylaldehyde (0.1 mmol, 15.2 mg) and cyclopentylamine (0.1 mmol, 8.5 mg) were mixed and stirred in methanol (10 ml) for 30 min. Then a methanol solution (5 ml) of copper acetate (0.1 mmol, 19.9 mg) was added to the mixture. The final mixture was stirred for another 30 min to give a blue solution. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution at room temperature.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmetyl). Rotating group models were used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Cu(C13H16NO2)2]F(000) = 1052
Mr = 500.08Dx = 1.383 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3695 reflections
a = 8.496 (1) Åθ = 2.5–25.1°
b = 14.054 (2) ŵ = 0.94 mm1
c = 20.442 (2) ÅT = 298 K
β = 100.236 (3)°Block, blue
V = 2402.0 (5) Å30.23 × 0.21 × 0.21 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer4333 independent reflections
Radiation source: fine-focus sealed tube3131 reflections with I > 2σ(I)
graphiteRint = 0.081
ω scansθmax = 25.3°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −9→10
Tmin = 0.812, Tmax = 0.826k = −16→16
12222 measured reflectionsl = −24→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0973P)2] where P = (Fo2 + 2Fc2)/3
4333 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = −1.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu1−0.00311 (5)0.84349 (3)0.75910 (2)0.0392 (2)
N1−0.0266 (3)0.8673 (2)0.85224 (14)0.0387 (7)
N20.0215 (3)0.8950 (2)0.67202 (13)0.0367 (7)
O10.2109 (3)0.80068 (19)0.77995 (11)0.0460 (6)
O20.6781 (3)0.6732 (2)0.91142 (15)0.0597 (8)
O3−0.2181 (3)0.8050 (2)0.73199 (11)0.0487 (7)
O4−0.6953 (3)0.7268 (2)0.58341 (13)0.0608 (8)
C10.2376 (4)0.8058 (3)0.89943 (16)0.0387 (8)
C20.2940 (4)0.7847 (2)0.83963 (16)0.0376 (8)
C30.4436 (4)0.7414 (2)0.84350 (17)0.0408 (8)
H30.48170.72760.80470.049*
C40.5355 (4)0.7190 (3)0.90438 (18)0.0438 (9)
C50.4826 (5)0.7423 (3)0.96339 (18)0.0510 (10)
H50.54570.72891.00440.061*
C60.3390 (4)0.7843 (3)0.96003 (18)0.0481 (10)
H60.30510.79990.99950.058*
C70.7322 (5)0.6397 (3)0.8541 (2)0.0614 (12)
H7A0.65250.59900.82930.092*
H7B0.82970.60460.86710.092*
H7C0.75130.69280.82700.092*
C80.0844 (4)0.8467 (2)0.90186 (18)0.0404 (9)
H80.06250.85990.94390.049*
C9−0.1767 (4)0.9093 (3)0.86370 (17)0.0414 (8)
H9−0.26300.86650.84360.050*
C10−0.2091 (5)1.0059 (3)0.8299 (2)0.0653 (12)
H10A−0.11171.04330.83490.078*
H10B−0.25080.99800.78280.078*
C11−0.3317 (6)1.0539 (4)0.8645 (3)0.0819 (16)
H11A−0.29541.11690.87960.098*
H11B−0.43321.05990.83440.098*
C12−0.3499 (5)0.9915 (3)0.9232 (2)0.0670 (13)
H12A−0.44580.95290.91310.080*
H12B−0.35551.02980.96220.080*
C13−0.2011 (5)0.9294 (3)0.9345 (2)0.0563 (11)
H13A−0.21860.87110.95750.068*
H13B−0.11020.96290.95960.068*
C14−0.2496 (4)0.8557 (2)0.61796 (17)0.0393 (9)
C15−0.3019 (4)0.8089 (3)0.67175 (17)0.0390 (8)
C16−0.4528 (4)0.7646 (3)0.66019 (17)0.0432 (9)
H16−0.48800.73240.69470.052*
C17−0.5492 (4)0.7683 (3)0.59848 (18)0.0448 (9)
C18−0.4993 (5)0.8175 (3)0.54602 (19)0.0540 (11)
H18−0.56560.82130.50470.065*
C19−0.3540 (4)0.8592 (3)0.55627 (18)0.0497 (10)
H19−0.32160.89160.52130.060*
C20−0.7465 (6)0.6658 (3)0.6315 (3)0.0699 (14)
H20A−0.66420.62020.64690.105*
H20B−0.84230.63320.61150.105*
H20C−0.76750.70320.66830.105*
C21−0.0928 (4)0.8941 (2)0.62103 (17)0.0400 (8)
H21−0.07070.92150.58220.048*
C220.1781 (4)0.9340 (2)0.66504 (17)0.0386 (8)
H220.25400.88080.67020.046*
C230.1945 (4)0.9857 (3)0.60076 (18)0.0472 (9)
H23A0.19850.94080.56510.057*
H23B0.10571.02900.58730.057*
C240.3521 (5)1.0401 (3)0.6185 (2)0.0557 (11)
H24A0.34211.10320.59890.067*
H24B0.43721.00650.60220.067*
C250.3882 (5)1.0467 (3)0.6946 (2)0.0631 (12)
H25A0.48231.00960.71240.076*
H25B0.40671.11230.70870.076*
C260.2415 (5)1.0072 (3)0.71846 (19)0.0493 (10)
H26A0.16321.05670.72080.059*
H26B0.27030.97740.76170.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0408 (3)0.0561 (3)0.0189 (3)0.00078 (18)0.00073 (19)0.00373 (18)
N10.0382 (17)0.0517 (17)0.0256 (16)−0.0011 (13)0.0040 (13)0.0007 (13)
N20.0390 (16)0.0482 (17)0.0227 (15)0.0050 (13)0.0045 (12)0.0025 (13)
O10.0477 (15)0.0664 (16)0.0218 (13)0.0132 (13)0.0001 (11)0.0091 (12)
O20.0506 (17)0.082 (2)0.0432 (17)0.0161 (14)−0.0017 (14)0.0044 (15)
O30.0483 (15)0.0762 (17)0.0189 (13)−0.0110 (13)−0.0013 (11)0.0067 (12)
O40.0481 (17)0.093 (2)0.0370 (16)−0.0184 (15)−0.0033 (13)−0.0022 (15)
C10.044 (2)0.049 (2)0.0206 (18)0.0027 (16)−0.0030 (15)−0.0013 (16)
C20.047 (2)0.0435 (19)0.0215 (17)−0.0014 (16)0.0030 (15)0.0049 (15)
C30.045 (2)0.052 (2)0.0262 (18)0.0029 (17)0.0067 (16)0.0036 (16)
C40.042 (2)0.050 (2)0.036 (2)0.0022 (16)−0.0022 (16)0.0066 (17)
C50.051 (2)0.070 (3)0.027 (2)0.0025 (19)−0.0074 (17)0.0035 (19)
C60.055 (2)0.067 (3)0.0202 (18)0.0014 (19)0.0018 (17)−0.0019 (18)
C70.053 (3)0.071 (3)0.061 (3)0.019 (2)0.012 (2)0.009 (2)
C80.044 (2)0.055 (2)0.0227 (18)−0.0036 (16)0.0081 (16)−0.0031 (16)
C90.040 (2)0.055 (2)0.0281 (19)−0.0057 (16)0.0050 (15)−0.0045 (17)
C100.062 (3)0.073 (3)0.064 (3)0.018 (2)0.021 (2)0.018 (2)
C110.092 (4)0.082 (3)0.076 (4)0.032 (3)0.028 (3)0.010 (3)
C120.070 (3)0.073 (3)0.063 (3)0.009 (2)0.024 (2)−0.017 (2)
C130.061 (3)0.072 (3)0.038 (2)0.005 (2)0.017 (2)−0.005 (2)
C140.042 (2)0.056 (2)0.0185 (18)0.0033 (16)0.0012 (15)0.0013 (15)
C150.043 (2)0.051 (2)0.0215 (18)0.0045 (16)0.0028 (15)−0.0023 (16)
C160.044 (2)0.061 (2)0.0234 (18)−0.0042 (17)0.0024 (16)0.0031 (17)
C170.044 (2)0.060 (2)0.0279 (19)−0.0007 (17)0.0004 (16)−0.0064 (18)
C180.049 (2)0.086 (3)0.023 (2)−0.002 (2)−0.0044 (17)0.001 (2)
C190.048 (2)0.077 (3)0.023 (2)−0.0010 (19)0.0031 (17)0.0059 (18)
C200.061 (3)0.087 (3)0.060 (3)−0.026 (2)0.005 (2)0.003 (3)
C210.044 (2)0.054 (2)0.0228 (18)0.0017 (17)0.0071 (15)0.0070 (16)
C220.038 (2)0.045 (2)0.0319 (19)0.0040 (15)0.0053 (15)0.0026 (16)
C230.053 (2)0.056 (2)0.034 (2)−0.0034 (18)0.0110 (18)0.0057 (18)
C240.059 (3)0.058 (2)0.053 (3)−0.013 (2)0.020 (2)−0.002 (2)
C250.065 (3)0.068 (3)0.053 (3)−0.018 (2)0.000 (2)0.005 (2)
C260.057 (2)0.056 (2)0.034 (2)−0.0040 (18)0.0031 (18)−0.0020 (18)

Geometric parameters (Å, °)

Cu1—O11.890 (2)C11—H11A0.9700
Cu1—O31.891 (2)C11—H11B0.9700
Cu1—N21.967 (3)C12—C131.520 (6)
Cu1—N11.978 (3)C12—H12A0.9700
N1—C81.289 (4)C12—H12B0.9700
N1—C91.462 (4)C13—H13A0.9700
N2—C211.292 (4)C13—H13B0.9700
N2—C221.469 (4)C14—C191.408 (5)
O1—C21.316 (4)C14—C151.419 (5)
O2—C41.356 (4)C14—C211.428 (5)
O2—C71.414 (5)C15—C161.407 (5)
O3—C151.309 (4)C16—C171.378 (5)
O4—C171.356 (4)C16—H160.9300
O4—C201.429 (5)C17—C181.403 (5)
C1—C61.410 (5)C18—C191.349 (5)
C1—C21.421 (5)C18—H180.9300
C1—C81.432 (5)C19—H190.9300
C2—C31.398 (5)C20—H20A0.9600
C3—C41.383 (5)C20—H20B0.9600
C3—H30.9300C20—H20C0.9600
C4—C51.399 (5)C21—H210.9300
C5—C61.346 (5)C22—C261.527 (5)
C5—H50.9300C22—C231.529 (5)
C6—H60.9300C22—H220.9800
C7—H7A0.9600C23—C241.529 (5)
C7—H7B0.9600C23—H23A0.9700
C7—H7C0.9600C23—H23B0.9700
C8—H80.9300C24—C251.535 (6)
C9—C131.524 (5)C24—H24A0.9700
C9—C101.527 (5)C24—H24B0.9700
C9—H90.9800C25—C261.522 (5)
C10—C111.518 (6)C25—H25A0.9700
C10—H10A0.9700C25—H25B0.9700
C10—H10B0.9700C26—H26A0.9700
C11—C121.516 (6)C26—H26B0.9700
O1—Cu1—O3144.60 (13)C13—C12—H12B110.8
O1—Cu1—N293.93 (11)H12A—C12—H12B108.9
O3—Cu1—N295.32 (11)C12—C13—C9102.3 (3)
O1—Cu1—N195.40 (11)C12—C13—H13A111.3
O3—Cu1—N194.20 (11)C9—C13—H13A111.3
N2—Cu1—N1148.66 (12)C12—C13—H13B111.3
C8—N1—C9120.1 (3)C9—C13—H13B111.3
C8—N1—Cu1122.4 (2)H13A—C13—H13B109.2
C9—N1—Cu1117.6 (2)C19—C14—C15118.5 (3)
C21—N2—C22119.3 (3)C19—C14—C21117.4 (3)
C21—N2—Cu1122.7 (2)C15—C14—C21124.0 (3)
C22—N2—Cu1118.0 (2)O3—C15—C16117.8 (3)
C2—O1—Cu1126.8 (2)O3—C15—C14123.7 (3)
C4—O2—C7119.1 (3)C16—C15—C14118.5 (3)
C15—O3—Cu1126.8 (2)C17—C16—C15120.8 (3)
C17—O4—C20118.7 (3)C17—C16—H16119.6
C6—C1—C2117.6 (3)C15—C16—H16119.6
C6—C1—C8118.2 (3)O4—C17—C16124.2 (3)
C2—C1—C8124.1 (3)O4—C17—C18115.3 (3)
O1—C2—C3117.4 (3)C16—C17—C18120.5 (3)
O1—C2—C1123.7 (3)C19—C18—C17119.2 (3)
C3—C2—C1118.9 (3)C19—C18—H18120.4
C4—C3—C2120.8 (3)C17—C18—H18120.4
C4—C3—H3119.6C18—C19—C14122.5 (4)
C2—C3—H3119.6C18—C19—H19118.8
O2—C4—C3123.7 (4)C14—C19—H19118.8
O2—C4—C5115.9 (3)O4—C20—H20A109.5
C3—C4—C5120.4 (3)O4—C20—H20B109.5
C6—C5—C4119.1 (3)H20A—C20—H20B109.5
C6—C5—H5120.5O4—C20—H20C109.5
C4—C5—H5120.5H20A—C20—H20C109.5
C5—C6—C1123.1 (4)H20B—C20—H20C109.5
C5—C6—H6118.5N2—C21—C14126.9 (3)
C1—C6—H6118.5N2—C21—H21116.5
O2—C7—H7A109.5C14—C21—H21116.5
O2—C7—H7B109.5N2—C22—C26113.1 (3)
H7A—C7—H7B109.5N2—C22—C23118.9 (3)
O2—C7—H7C109.5C26—C22—C23102.7 (3)
H7A—C7—H7C109.5N2—C22—H22107.2
H7B—C7—H7C109.5C26—C22—H22107.2
N1—C8—C1127.2 (3)C23—C22—H22107.2
N1—C8—H8116.4C24—C23—C22104.1 (3)
C1—C8—H8116.4C24—C23—H23A110.9
N1—C9—C13119.8 (3)C22—C23—H23A110.9
N1—C9—C10112.2 (3)C24—C23—H23B110.9
C13—C9—C10102.8 (3)C22—C23—H23B110.9
N1—C9—H9107.1H23A—C23—H23B109.0
C13—C9—H9107.1C23—C24—C25106.2 (3)
C10—C9—H9107.1C23—C24—H24A110.5
C11—C10—C9105.5 (3)C25—C24—H24A110.5
C11—C10—H10A110.6C23—C24—H24B110.5
C9—C10—H10A110.6C25—C24—H24B110.5
C11—C10—H10B110.6H24A—C24—H24B108.7
C9—C10—H10B110.6C26—C25—C24106.0 (3)
H10A—C10—H10B108.8C26—C25—H25A110.5
C12—C11—C10106.7 (4)C24—C25—H25A110.5
C12—C11—H11A110.4C26—C25—H25B110.5
C10—C11—H11A110.4C24—C25—H25B110.5
C12—C11—H11B110.4H25A—C25—H25B108.7
C10—C11—H11B110.4C25—C26—C22102.8 (3)
H11A—C11—H11B108.6C25—C26—H26A111.2
C11—C12—C13104.6 (3)C22—C26—H26A111.2
C11—C12—H12A110.8C25—C26—H26B111.2
C13—C12—H12A110.8C22—C26—H26B111.2
C11—C12—H12B110.8H26A—C26—H26B109.1

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5030).

References

  • Adhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem.62, 3573–3582.
  • Akitsu, T. & Einaga, Y. (2004). Acta Cryst. E60, m436–m438.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dhar, S., Senapati, D., Das, P. K., Chattopadhyay, P., Nethaji, M. & Chakravarty, A. R. (2003). J. Am. Chem. Soc.125, 12118–12124. [PubMed]
  • Friščić, T., Lough, A. J., Ferguson, G. & Kaitner, B. (2002). Acta Cryst. C58, m313–m315. [PubMed]
  • Hamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr.40, 34–39.
  • Han, Q.-F., Jian, F.-F., Lu, L.-D., Yang, X.-J. & Wang, X. (2001). J. Chem. Crystallogr.31, 247–255.
  • Keypour, H., Azadbakht, R., Rudbari, H. A., Heydarinekoo, A. & Khavasi, H. (2009). Transition Met. Chem.34, 835–839.
  • Liu, Y.-C. & Yang, Z.-Y. (2009). Eur. J. Med. Chem.44, 5080–5089. [PubMed]
  • Marsh, R. E. & Spek, A. L. (2001). Acta Cryst. B57, 800–805. [PubMed]
  • Mirkhani, V., Kia, R., Milic, D., Vartooni, A. R. & Matkovic-Calogovic, D. (2010). Transition Met. Chem.35, 81–87.
  • Peng, S.-J., Hou, H.-Y. & Zhou, C.-S. (2009). Synth. React. Inorg. Met. Org. Nano-Met. Chem.39, 462–466.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, W., Zhang, F. X., Li, J. & Hu, W. B. (2010). Russ. J. Coord. Chem.36, 33–36.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography