PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2153–o2154.
Published online 2010 July 31. doi:  10.1107/S1600536810029636
PMCID: PMC3007532

2-Amino-5-methyl­pyridinium 3-carb­oxy-4-hy­droxy­benzene­sulfonate

Abstract

The asymmetric unit of the title salt, C6H9N2 +·C7H5O6S, contains two crystallographically independent 2-amino-5-methylpyridinium cations and two sulfosalicylate anions. In the crystal structure, the sulfonate group of each 3-carb­oxy-4-hy­droxy­benzene­sulfonate anion inter­acts with the corresponding 2-amino-5-methyl­pyridinium cation via a pair of N—H(...)O hydrogen bonds, forming an R 2 2(8) ring motif. The ionic units are linked by N—H(...)O, O—H(...)O and C—H(...)O hydrogen bonds. Furthermore, the crystal structure is stabilized by π–π inter­actions between the benzene and pyridine rings [centroid–centroid distances = 3.5579 (8) and 3.8309 (8) Å]. There are also intra­molecular O—H(...)O hydrogen bonds in the anions, which generate S(6) ring motifs.

Related literature

For details of weak inter­actions, see: Moghimi et al. (2002 [triangle]); Aghabozorg et al. (2005 [triangle]). For applications of sulfosalicylic acid, see: Smith et al. (2004 [triangle]); Raj et al. (2003 [triangle]); Muthiah et al. (2003 [triangle]); Wang & Wei (2007 [triangle]). For related structures, see: Nahringbauer & Kvick (1977 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2153-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·C7H5O6S
  • M r = 326.32
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2153-efi1.jpg
  • a = 7.8635 (1) Å
  • b = 10.8827 (1) Å
  • c = 16.3907 (2) Å
  • α = 84.612 (1)°
  • β = 81.802 (1)°
  • γ = 86.290 (1)°
  • V = 1380.31 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 100 K
  • 0.27 × 0.16 × 0.15 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.931, T max = 0.960
  • 28351 measured reflections
  • 7325 independent reflections
  • 6209 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.092
  • S = 1.04
  • 7325 reflections
  • 439 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810029636/is2580sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029636/is2580Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Weak interactions, such as hydrogen bonding and π–π stacking, have attracted much interest as a result of their significance in chemistry and biology, especially in the field of crystal engineering (Moghimi et al., 2002; Aghabozorg et al., 2005). 5-Sulfosalicylic acid (3-carboxy-4-hydroxybenzenesulfonic acid), is a particularly strong organic acid which is capable of protonating N-containing heterocycles and other Lewis bases (Smith et al.; 2004, Raj et al., 2003; Muthiah et al., 2003; Wang & Wei, 2007). As part of our research programme aiming to gain further insight into hydrogen-bonding interactions involving 2-amino-5-methylpyridine and 3-carboxy-4-hydroxybenzenesulfonic acid, the present work has been undertaken.

The asymmetric unit of the title salt consists of two crystallographically independent 2-amino-5-methylpyridinium cations (A & B) and two sulfosalicylate anions (A & B) (Fig. 1). Each 2-amino-5-methylpyridinium cation is planar, with a maximum deviation of 0.003 (1) Å for C5A atom (molecule A) and 0.008 (1) Å for atom C2B (molecule B). In the cations, protonation at atoms N1A and N1B lead to slight increases in the C1A—N1A—C2A [123.30 (12)°] and C1B—N1B—C2B [123.07 (12)°] angles compared to those observed in an unprotonated structure (Nahringbauer & Kvick, 1977). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure (Fig. 2), the sulfonate group of each 3-carboxy-4- hydroxybenzenesulfonate anion interacts with the corresponding 2-amino- 5-methylpyridinium cation via a pair of N—H···O hydrogen bonds, forming an R22(8) ring motif (Bernstein et al., 1995). The ionic units are linked by N—H···O and O—H···O (Table 1) hydrogen bonds. The 3-carboxy 4-hydroxybenzenesulfonate anions self-assemble via O—H···O and C—H···O interactions, leading to the formation of a sheet-like structure, as shown in Fig. 3. There are intramolecular hydrogen bonds between the -OH and -COOH groups in sulfosalicylate anions, which generate S(6) ring motifs. The crystal structure is further stabilized by π–π interactions between the cations and anions [centroid-to-centroid distance = 3.5579 (8) Å (1-x, 1-y, 1-z) and 3.8309 (8) Å (2-x, 1-y, 1-z)].

Experimental

A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (27 mg, Aldrich) and sulfosalicylic acid (54 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

Atoms H1OA, H2OA, H1OB, H2OB, H1NA, H2NA, H3NA, H1NB, H2NB and H3NB were located in a difference Fourier map and were refined freely [N—H = 0.87 (2)–0.90 (2) Å and O—H = 0.86 (2)–0.88 (2) Å]. The remaining hydrogen atoms were positioned geometrically [C—H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Hydrogen bonding patterns in compound (I).
Fig. 3.
Supramolecular sheet made up of 3-carboxy-4-hydroxybenzenesulfonate anions. .

Crystal data

C6H9N2+·C7H5O6SZ = 4
Mr = 326.32F(000) = 680
Triclinic, P1Dx = 1.570 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8635 (1) ÅCell parameters from 9890 reflections
b = 10.8827 (1) Åθ = 2.4–30.2°
c = 16.3907 (2) ŵ = 0.27 mm1
α = 84.612 (1)°T = 100 K
β = 81.802 (1)°Block, colourless
γ = 86.290 (1)°0.27 × 0.16 × 0.15 mm
V = 1380.31 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer7325 independent reflections
Radiation source: fine-focus sealed tube6209 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 29.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −10→10
Tmin = 0.931, Tmax = 0.960k = −14→14
28351 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0439P)2 + 0.7462P] where P = (Fo2 + 2Fc2)/3
7325 reflections(Δ/σ)max = 0.001
439 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1A0.70541 (15)0.97702 (11)0.37753 (7)0.0143 (2)
N2A0.87358 (16)0.87759 (12)0.47109 (8)0.0187 (2)
C1A0.65985 (18)1.00244 (13)0.30014 (8)0.0157 (3)
H1AA0.56591.05670.29280.019*
C2A0.83866 (17)0.89880 (12)0.39405 (8)0.0148 (3)
C3A0.93427 (18)0.84175 (13)0.32623 (9)0.0184 (3)
H3AA1.02720.78710.33470.022*
C4A0.88974 (19)0.86717 (13)0.24861 (9)0.0196 (3)
H4AA0.95320.82920.20470.024*
C5A0.74866 (18)0.95025 (13)0.23365 (9)0.0177 (3)
C6A0.6994 (2)0.97934 (16)0.14844 (9)0.0254 (3)
H6AA0.60161.03710.15080.038*
H6AB0.67110.90480.12760.038*
H6AC0.79411.01480.11240.038*
N1B0.80370 (15)0.51730 (11)0.82703 (7)0.0164 (2)
N2B0.62446 (18)0.60847 (12)0.93174 (8)0.0203 (3)
C1B0.85961 (18)0.50127 (13)0.74565 (8)0.0171 (3)
H1BA0.95400.44740.73220.021*
C2B0.66881 (18)0.59477 (12)0.85203 (9)0.0163 (3)
C3B0.58139 (18)0.65888 (13)0.78921 (9)0.0185 (3)
H3BA0.48660.71200.80360.022*
C4B0.63620 (19)0.64269 (13)0.70806 (9)0.0195 (3)
H4BA0.57790.68520.66760.023*
C5B0.78034 (18)0.56232 (13)0.68388 (9)0.0179 (3)
C6B0.8423 (2)0.54427 (16)0.59433 (9)0.0256 (3)
H6BA0.95110.49830.58990.038*
H6BB0.85520.62340.56350.038*
H6BC0.76000.49960.57250.038*
S1A0.65009 (4)0.18717 (3)0.536127 (19)0.01282 (8)
O1A0.79222 (12)0.26353 (9)0.49587 (6)0.0174 (2)
O2A0.71260 (13)0.07391 (9)0.57916 (6)0.0191 (2)
O3A0.53262 (13)0.16622 (9)0.47817 (6)0.0181 (2)
O4A0.25189 (13)0.48004 (9)0.79013 (6)0.0177 (2)
O5A0.64439 (13)0.22501 (9)0.85364 (6)0.0190 (2)
O6A0.42614 (14)0.35554 (10)0.89784 (6)0.0220 (2)
C7A0.56636 (17)0.25282 (12)0.69411 (8)0.0127 (2)
H7AA0.64740.19120.70790.015*
C8A0.53508 (17)0.27527 (12)0.61292 (8)0.0128 (2)
C9A0.41623 (17)0.36980 (12)0.59126 (8)0.0146 (2)
H9AA0.39820.38610.53640.018*
C10A0.32577 (18)0.43881 (12)0.65118 (8)0.0153 (3)
H10A0.24780.50210.63640.018*
C11A0.35090 (17)0.41392 (12)0.73440 (8)0.0133 (2)
C12A0.47654 (17)0.32248 (12)0.75539 (8)0.0127 (2)
C13A0.51185 (17)0.30248 (12)0.84203 (8)0.0144 (2)
S1B0.85292 (4)0.31409 (3)0.00943 (2)0.01532 (8)
O1B0.79350 (15)0.43064 (10)0.04277 (6)0.0251 (2)
O2B0.70905 (13)0.23442 (10)0.00786 (6)0.0218 (2)
O3B0.95916 (14)0.32797 (10)−0.07089 (6)0.0210 (2)
O4B1.26682 (13)0.03415 (9)0.24475 (6)0.0184 (2)
O5B1.06979 (13)0.13883 (9)0.36187 (6)0.0189 (2)
O6B0.84902 (13)0.26692 (9)0.33138 (6)0.0166 (2)
C7B0.93897 (17)0.25027 (12)0.16353 (8)0.0133 (2)
H7BA0.84890.30520.18160.016*
C8B0.98051 (17)0.23526 (12)0.08005 (8)0.0144 (2)
C9B1.11603 (19)0.15321 (14)0.05255 (9)0.0199 (3)
H9BA1.14310.1435−0.00370.024*
C10B1.21005 (19)0.08647 (14)0.10831 (9)0.0197 (3)
H10B1.30000.03190.08950.024*
C11B1.17031 (17)0.10077 (12)0.19298 (8)0.0146 (3)
C12B1.03250 (17)0.18283 (12)0.22094 (8)0.0129 (2)
C13B0.98732 (17)0.19430 (12)0.31039 (8)0.0135 (2)
H1OA0.281 (3)0.455 (2)0.8388 (14)0.043 (6)*
H2OA0.656 (3)0.225 (2)0.9052 (14)0.042 (6)*
H1OB1.228 (3)0.051 (2)0.2945 (16)0.053 (7)*
H2OB0.833 (3)0.264 (2)0.3844 (15)0.047 (6)*
H1NA0.640 (2)1.0158 (17)0.4175 (12)0.025 (5)*
H2NA0.814 (2)0.9185 (17)0.5103 (12)0.023 (5)*
H3NA0.970 (3)0.8352 (17)0.4780 (11)0.022 (5)*
H1NB0.858 (3)0.474 (2)0.8631 (13)0.036 (6)*
H2NB0.683 (3)0.565 (2)0.9689 (14)0.040 (6)*
H3NB0.531 (3)0.6531 (18)0.9467 (12)0.029 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N1A0.0140 (5)0.0164 (5)0.0126 (5)0.0000 (4)−0.0004 (4)−0.0044 (4)
N2A0.0164 (6)0.0243 (6)0.0155 (6)0.0031 (5)−0.0034 (5)−0.0036 (5)
C1A0.0158 (6)0.0167 (6)0.0152 (6)−0.0020 (5)−0.0031 (5)−0.0015 (5)
C2A0.0140 (6)0.0143 (6)0.0164 (6)−0.0022 (5)−0.0014 (5)−0.0022 (5)
C3A0.0165 (6)0.0170 (6)0.0213 (7)0.0016 (5)0.0001 (5)−0.0050 (5)
C4A0.0206 (7)0.0199 (7)0.0180 (7)−0.0031 (5)0.0035 (5)−0.0078 (5)
C5A0.0196 (7)0.0196 (6)0.0147 (6)−0.0064 (5)−0.0012 (5)−0.0034 (5)
C6A0.0289 (8)0.0334 (8)0.0148 (7)−0.0055 (7)−0.0023 (6)−0.0044 (6)
N1B0.0175 (6)0.0181 (6)0.0130 (5)0.0004 (4)−0.0030 (4)0.0015 (4)
N2B0.0216 (6)0.0233 (6)0.0149 (6)0.0020 (5)−0.0006 (5)−0.0007 (5)
C1B0.0164 (6)0.0193 (6)0.0155 (6)−0.0016 (5)−0.0005 (5)−0.0023 (5)
C2B0.0168 (6)0.0153 (6)0.0166 (6)−0.0031 (5)−0.0013 (5)−0.0002 (5)
C3B0.0161 (6)0.0178 (6)0.0213 (7)0.0003 (5)−0.0038 (5)0.0006 (5)
C4B0.0209 (7)0.0190 (7)0.0198 (7)−0.0038 (5)−0.0085 (6)0.0033 (5)
C5B0.0182 (7)0.0213 (7)0.0149 (6)−0.0065 (5)−0.0027 (5)0.0001 (5)
C6B0.0286 (8)0.0335 (8)0.0152 (7)−0.0066 (7)−0.0035 (6)−0.0012 (6)
S1A0.01335 (15)0.01459 (15)0.01021 (14)0.00201 (11)−0.00056 (11)−0.00296 (11)
O1A0.0158 (5)0.0214 (5)0.0144 (5)−0.0015 (4)0.0018 (4)−0.0034 (4)
O2A0.0237 (5)0.0166 (5)0.0157 (5)0.0069 (4)−0.0010 (4)−0.0019 (4)
O3A0.0169 (5)0.0235 (5)0.0151 (5)0.0014 (4)−0.0035 (4)−0.0078 (4)
O4A0.0200 (5)0.0201 (5)0.0125 (5)0.0077 (4)−0.0026 (4)−0.0053 (4)
O5A0.0229 (5)0.0211 (5)0.0143 (5)0.0066 (4)−0.0085 (4)−0.0050 (4)
O6A0.0271 (6)0.0263 (5)0.0125 (5)0.0095 (4)−0.0047 (4)−0.0065 (4)
C7A0.0124 (6)0.0130 (6)0.0131 (6)0.0009 (5)−0.0025 (5)−0.0019 (4)
C8A0.0132 (6)0.0134 (6)0.0114 (6)0.0001 (5)−0.0005 (5)−0.0027 (4)
C9A0.0162 (6)0.0165 (6)0.0111 (6)0.0010 (5)−0.0031 (5)−0.0001 (5)
C10A0.0161 (6)0.0156 (6)0.0141 (6)0.0038 (5)−0.0039 (5)−0.0009 (5)
C11A0.0136 (6)0.0131 (6)0.0133 (6)0.0012 (5)−0.0011 (5)−0.0038 (5)
C12A0.0142 (6)0.0125 (6)0.0118 (6)−0.0002 (5)−0.0030 (5)−0.0017 (4)
C13A0.0170 (6)0.0132 (6)0.0135 (6)0.0006 (5)−0.0043 (5)−0.0024 (5)
S1B0.01759 (16)0.01824 (16)0.01035 (15)0.00332 (12)−0.00421 (12)−0.00176 (11)
O1B0.0344 (6)0.0232 (5)0.0183 (5)0.0122 (5)−0.0093 (5)−0.0059 (4)
O2B0.0212 (5)0.0286 (6)0.0165 (5)−0.0029 (4)−0.0080 (4)0.0019 (4)
O3B0.0228 (5)0.0264 (5)0.0124 (5)0.0021 (4)−0.0017 (4)0.0015 (4)
O4B0.0186 (5)0.0211 (5)0.0150 (5)0.0075 (4)−0.0045 (4)−0.0012 (4)
O5B0.0220 (5)0.0216 (5)0.0127 (4)0.0058 (4)−0.0041 (4)−0.0004 (4)
O6B0.0187 (5)0.0192 (5)0.0107 (4)0.0049 (4)−0.0003 (4)−0.0012 (4)
C7B0.0128 (6)0.0137 (6)0.0136 (6)0.0003 (5)−0.0022 (5)−0.0023 (5)
C8B0.0153 (6)0.0161 (6)0.0122 (6)0.0020 (5)−0.0042 (5)−0.0024 (5)
C9B0.0221 (7)0.0252 (7)0.0125 (6)0.0056 (6)−0.0032 (5)−0.0059 (5)
C10B0.0193 (7)0.0236 (7)0.0155 (6)0.0085 (6)−0.0015 (5)−0.0059 (5)
C11B0.0141 (6)0.0153 (6)0.0145 (6)0.0018 (5)−0.0034 (5)−0.0016 (5)
C12B0.0135 (6)0.0132 (6)0.0125 (6)−0.0003 (5)−0.0023 (5)−0.0021 (5)
C13B0.0155 (6)0.0123 (6)0.0125 (6)−0.0010 (5)−0.0015 (5)−0.0011 (4)

Geometric parameters (Å, °)

N1A—C2A1.3483 (18)S1A—O1A1.4771 (10)
N1A—C1A1.3655 (17)S1A—C8A1.7639 (13)
N1A—H1NA0.89 (2)O4A—C11A1.3440 (16)
N2A—C2A1.3264 (18)O4A—H1OA0.88 (2)
N2A—H2NA0.88 (2)O5A—C13A1.3213 (16)
N2A—H3NA0.88 (2)O5A—H2OA0.86 (2)
C1A—C5A1.359 (2)O6A—C13A1.2238 (17)
C1A—H1AA0.9300C7A—C8A1.3840 (18)
C2A—C3A1.4203 (19)C7A—C12A1.3977 (18)
C3A—C4A1.366 (2)C7A—H7AA0.9300
C3A—H3AA0.9300C8A—C9A1.3998 (18)
C4A—C5A1.419 (2)C9A—C10A1.3801 (19)
C4A—H4AA0.9300C9A—H9AA0.9300
C5A—C6A1.502 (2)C10A—C11A1.4047 (18)
C6A—H6AA0.9600C10A—H10A0.9300
C6A—H6AB0.9600C11A—C12A1.4107 (18)
C6A—H6AC0.9600C12A—C13A1.4791 (18)
N1B—C2B1.3524 (18)S1B—O1B1.4513 (11)
N1B—C1B1.3673 (18)S1B—O3B1.4558 (10)
N1B—H1NB0.87 (2)S1B—O2B1.4737 (11)
N2B—C2B1.3231 (18)S1B—C8B1.7651 (13)
N2B—H2NB0.90 (2)O4B—C11B1.3485 (16)
N2B—H3NB0.87 (2)O4B—H1OB0.86 (3)
C1B—C5B1.3621 (19)O5B—C13B1.2275 (16)
C1B—H1BA0.9300O6B—C13B1.3262 (16)
C2B—C3B1.4229 (19)O6B—H2OB0.86 (2)
C3B—C4B1.363 (2)C7B—C8B1.3833 (18)
C3B—H3BA0.9300C7B—C12B1.4009 (18)
C4B—C5B1.420 (2)C7B—H7BA0.9300
C4B—H4BA0.9300C8B—C9B1.3969 (19)
C5B—C6B1.506 (2)C9B—C10B1.3813 (19)
C6B—H6BA0.9600C9B—H9BA0.9300
C6B—H6BB0.9600C10B—C11B1.3994 (19)
C6B—H6BC0.9600C10B—H10B0.9300
S1A—O2A1.4545 (10)C11B—C12B1.4113 (18)
S1A—O3A1.4580 (10)C12B—C13B1.4736 (18)
C2A—N1A—C1A123.30 (12)O3A—S1A—O1A111.39 (6)
C2A—N1A—H1NA121.4 (12)O2A—S1A—C8A106.31 (6)
C1A—N1A—H1NA115.3 (12)O3A—S1A—C8A107.62 (6)
C2A—N2A—H2NA119.6 (12)O1A—S1A—C8A105.57 (6)
C2A—N2A—H3NA116.7 (12)C11A—O4A—H1OA107.3 (15)
H2NA—N2A—H3NA122.3 (17)C13A—O5A—H2OA105.9 (15)
C5A—C1A—N1A121.50 (13)C8A—C7A—C12A120.22 (12)
C5A—C1A—H1AA119.2C8A—C7A—H7AA119.9
N1A—C1A—H1AA119.2C12A—C7A—H7AA119.9
N2A—C2A—N1A119.77 (13)C7A—C8A—C9A120.24 (12)
N2A—C2A—C3A123.29 (13)C7A—C8A—S1A119.75 (10)
N1A—C2A—C3A116.94 (12)C9A—C8A—S1A119.99 (10)
C4A—C3A—C2A120.04 (13)C10A—C9A—C8A120.17 (12)
C4A—C3A—H3AA120.0C10A—C9A—H9AA119.9
C2A—C3A—H3AA120.0C8A—C9A—H9AA119.9
C3A—C4A—C5A121.37 (13)C9A—C10A—C11A120.30 (12)
C3A—C4A—H4AA119.3C9A—C10A—H10A119.8
C5A—C4A—H4AA119.3C11A—C10A—H10A119.8
C1A—C5A—C4A116.84 (13)O4A—C11A—C10A117.21 (12)
C1A—C5A—C6A121.41 (14)O4A—C11A—C12A123.50 (12)
C4A—C5A—C6A121.74 (13)C10A—C11A—C12A119.29 (12)
C5A—C6A—H6AA109.5C7A—C12A—C11A119.64 (12)
C5A—C6A—H6AB109.5C7A—C12A—C13A121.04 (12)
H6AA—C6A—H6AB109.5C11A—C12A—C13A119.32 (12)
C5A—C6A—H6AC109.5O6A—C13A—O5A123.14 (12)
H6AA—C6A—H6AC109.5O6A—C13A—C12A122.18 (12)
H6AB—C6A—H6AC109.5O5A—C13A—C12A114.67 (12)
C2B—N1B—C1B123.07 (12)O1B—S1B—O3B113.74 (7)
C2B—N1B—H1NB120.3 (14)O1B—S1B—O2B111.56 (7)
C1B—N1B—H1NB116.6 (14)O3B—S1B—O2B111.44 (6)
C2B—N2B—H2NB119.5 (14)O1B—S1B—C8B106.35 (6)
C2B—N2B—H3NB118.2 (13)O3B—S1B—C8B107.66 (6)
H2NB—N2B—H3NB121.9 (19)O2B—S1B—C8B105.54 (6)
C5B—C1B—N1B121.57 (13)C11B—O4B—H1OB108.1 (17)
C5B—C1B—H1BA119.2C13B—O6B—H2OB106.8 (15)
N1B—C1B—H1BA119.2C8B—C7B—C12B120.05 (12)
N2B—C2B—N1B119.93 (13)C8B—C7B—H7BA120.0
N2B—C2B—C3B123.15 (13)C12B—C7B—H7BA120.0
N1B—C2B—C3B116.91 (13)C7B—C8B—C9B120.24 (12)
C4B—C3B—C2B120.18 (13)C7B—C8B—S1B119.28 (10)
C4B—C3B—H3BA119.9C9B—C8B—S1B120.38 (10)
C2B—C3B—H3BA119.9C10B—C9B—C8B120.42 (13)
C3B—C4B—C5B121.44 (13)C10B—C9B—H9BA119.8
C3B—C4B—H4BA119.3C8B—C9B—H9BA119.8
C5B—C4B—H4BA119.3C9B—C10B—C11B120.15 (13)
C1B—C5B—C4B116.81 (13)C9B—C10B—H10B119.9
C1B—C5B—C6B121.38 (14)C11B—C10B—H10B119.9
C4B—C5B—C6B121.80 (13)O4B—C11B—C10B117.80 (12)
C5B—C6B—H6BA109.5O4B—C11B—C12B122.69 (12)
C5B—C6B—H6BB109.5C10B—C11B—C12B119.50 (12)
H6BA—C6B—H6BB109.5C7B—C12B—C11B119.63 (12)
C5B—C6B—H6BC109.5C7B—C12B—C13B121.07 (12)
H6BA—C6B—H6BC109.5C11B—C12B—C13B119.29 (12)
H6BB—C6B—H6BC109.5O5B—C13B—O6B122.40 (12)
O2A—S1A—O3A113.38 (6)O5B—C13B—C12B122.43 (12)
O2A—S1A—O1A112.01 (6)O6B—C13B—C12B115.15 (11)
C2A—N1A—C1A—C5A−0.6 (2)C8A—C7A—C12A—C11A1.5 (2)
C1A—N1A—C2A—N2A−179.12 (13)C8A—C7A—C12A—C13A−178.13 (12)
C1A—N1A—C2A—C3A0.21 (19)O4A—C11A—C12A—C7A176.05 (12)
N2A—C2A—C3A—C4A179.36 (13)C10A—C11A—C12A—C7A−3.99 (19)
N1A—C2A—C3A—C4A0.0 (2)O4A—C11A—C12A—C13A−4.4 (2)
C2A—C3A—C4A—C5A0.0 (2)C10A—C11A—C12A—C13A175.62 (12)
N1A—C1A—C5A—C4A0.6 (2)C7A—C12A—C13A—O6A−174.32 (13)
N1A—C1A—C5A—C6A−179.37 (13)C11A—C12A—C13A—O6A6.1 (2)
C3A—C4A—C5A—C1A−0.4 (2)C7A—C12A—C13A—O5A6.87 (19)
C3A—C4A—C5A—C6A179.63 (14)C11A—C12A—C13A—O5A−172.73 (12)
C2B—N1B—C1B—C5B−0.8 (2)C12B—C7B—C8B—C9B−0.2 (2)
C1B—N1B—C2B—N2B−178.11 (13)C12B—C7B—C8B—S1B176.22 (10)
C1B—N1B—C2B—C3B1.5 (2)O1B—S1B—C8B—C7B33.14 (13)
N2B—C2B—C3B—C4B178.47 (14)O3B—S1B—C8B—C7B155.40 (11)
N1B—C2B—C3B—C4B−1.2 (2)O2B—S1B—C8B—C7B−85.48 (12)
C2B—C3B—C4B—C5B0.0 (2)O1B—S1B—C8B—C9B−150.46 (12)
N1B—C1B—C5B—C4B−0.4 (2)O3B—S1B—C8B—C9B−28.20 (14)
N1B—C1B—C5B—C6B−179.94 (13)O2B—S1B—C8B—C9B90.92 (13)
C3B—C4B—C5B—C1B0.8 (2)C7B—C8B—C9B—C10B−0.1 (2)
C3B—C4B—C5B—C6B−179.74 (14)S1B—C8B—C9B—C10B−176.49 (12)
C12A—C7A—C8A—C9A1.5 (2)C8B—C9B—C10B—C11B−0.1 (2)
C12A—C7A—C8A—S1A179.70 (10)C9B—C10B—C11B—O4B−179.52 (13)
O2A—S1A—C8A—C7A21.40 (13)C9B—C10B—C11B—C12B0.6 (2)
O3A—S1A—C8A—C7A143.18 (11)C8B—C7B—C12B—C11B0.7 (2)
O1A—S1A—C8A—C7A−97.74 (11)C8B—C7B—C12B—C13B−178.08 (12)
O2A—S1A—C8A—C9A−160.40 (11)O4B—C11B—C12B—C7B179.22 (12)
O3A—S1A—C8A—C9A−38.61 (12)C10B—C11B—C12B—C7B−1.0 (2)
O1A—S1A—C8A—C9A80.46 (12)O4B—C11B—C12B—C13B−1.9 (2)
C7A—C8A—C9A—C10A−1.9 (2)C10B—C11B—C12B—C13B177.88 (13)
S1A—C8A—C9A—C10A179.89 (11)C7B—C12B—C13B—O5B−178.04 (13)
C8A—C9A—C10A—C11A−0.7 (2)C11B—C12B—C13B—O5B3.1 (2)
C9A—C10A—C11A—O4A−176.43 (12)C7B—C12B—C13B—O6B3.28 (18)
C9A—C10A—C11A—C12A3.6 (2)C11B—C12B—C13B—O6B−175.54 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4A—H1OA···O6A0.88 (2)1.84 (2)2.6135 (14)147 (2)
O4A—H1OA···O1Bi0.88 (2)2.39 (2)2.9581 (14)123.2 (18)
O5A—H2OA···O2Bii0.86 (2)1.80 (2)2.6609 (14)172 (2)
O4B—H1OB···O5B0.86 (3)1.83 (2)2.5918 (14)147 (2)
O4B—H1OB···O2Aiii0.86 (3)2.45 (2)3.0349 (14)125.4 (18)
O6B—H2OB···O1A0.86 (2)1.81 (2)2.6664 (14)178 (2)
N1A—H1NA···O3Aiv0.894 (19)2.066 (19)2.9057 (15)156.0 (17)
N2A—H2NA···O2Aiv0.878 (19)2.167 (19)3.0043 (16)159.1 (17)
N2A—H2NA···O5Bv0.878 (19)2.417 (19)2.8235 (16)108.7 (13)
N2A—H3NA···O1Av0.88 (2)2.17 (2)3.0472 (16)175.6 (15)
N1B—H1NB···O3Bii0.87 (2)2.02 (2)2.8547 (16)161 (2)
N2B—H2NB···O1Bii0.90 (2)2.04 (2)2.9188 (17)166 (2)
N2B—H2NB···O6Avi0.90 (2)2.45 (2)2.8254 (16)105.9 (17)
N2B—H3NB···O2Bi0.87 (2)2.26 (2)3.1270 (17)177.1 (18)
C7A—H7AA···O4Biii0.932.583.4257 (16)152
C7B—H7BA···O4Ai0.932.483.3116 (16)148

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z+1; (iii) −x+2, −y, −z+1; (iv) x, y+1, z; (v) −x+2, −y+1, −z+1; (vi) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2580).

References

  • Aghabozorg, H., Akbari Saei, A. & Ramezanipour, F. (2005). Acta Cryst. E61, o3242–o3244.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Moghimi, A., Ranibar, M., Aghabozorg, H., Jalali, F., Shamsipur, M., Yap, G. P. A. & Rahbarnoohi, H. (2002). J. Mol. Struct.605, 133–149.
  • Muthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, o2015–o2017.
  • Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.
  • Raj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, o1448–o1449.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography