PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m905–m906.
Published online 2010 July 10. doi:  10.1107/S160053681002622X
PMCID: PMC3007526

catena-Poly[[aqua­(5,5′-dimethyl-2,2′-bipyridine-κ2 N,N′)copper(II)]-μ-2,2′-oxydibenzoato-κ2 O:O′]

Abstract

In the title compound, [Cu(C14H8O5)(C12H12N2)(H2O)]n, the CuII ion is penta­coordinated in a square-pyramidal geometry. Two N atoms of the chelating 5,5′-dimethyl-2,2′-bipyridine (dbp) ligand and two O atoms of two different 2,2′-oxydibenzoic (odb) ligands occupy the basal plane while the water O atom completes the square-pyramidal geometry at the apical site. The non-water N2O2 donor atoms are nearly coplanar, with a mean deviation from the least-squares plane of 0.0518 (11) Å and the Cu atom is displaced by 0.1507 (11) Å from this plane towards the apical water O atom. Further coordination via the 2,2′-oxydibenzoate anions forms a one-dimensional coordination polymer extending parallel to [010]. In the crystal structure, O—H(...)O hydrogen bonds link the mol­ecules into a two-dimensional supra­molecular structure.

Related literature

For background to the network topologies and applications of coordination polymers, see: Yaghi et al. (1998 [triangle]). For structures containing odb ligands, see: Gong et al. (2009 [triangle]); Hong (2008a [triangle],b [triangle]); Wang et al. (2010 [triangle]); Yu (2008 [triangle]); Xu et al. (2008a [triangle],b [triangle]). For complexes with 5,5′-dimethyl-2,2′-bipyridine (dbp), see: Zhao & Bai (2009 [triangle]); Khalighi et al. (2008 [triangle]); Kalateh et al. (2008 [triangle]); Dong et al. (2009 [triangle]); Ahmadi et al. (2008 [triangle], 2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m905-scheme1.jpg

Experimental

Crystal data

  • [Cu(C14H8O5)(C12H12N2)(H2O)]
  • M r = 522.00
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m905-efi3.jpg
  • a = 7.4235 (11) Å
  • b = 17.475 (3) Å
  • c = 18.053 (3) Å
  • β = 98.188 (3)°
  • V = 2318.0 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.99 mm−1
  • T = 296 K
  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.827, T max = 0.858
  • 12080 measured reflections
  • 4071 independent reflections
  • 3150 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.097
  • S = 1.04
  • 4071 reflections
  • 318 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002622X/nk2034sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002622X/nk2034Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

5,5'-Dimethyl-2,2'-bipyridine (dbp), is a good bidentate ligand, and numerous complexes with dbp have been prepared, such as that of Zn (Zhao & Bai, 2009; Khalighi et al. 2008), In (Kalateh et al. 2008), Cu (Dong et al. 2009) and Cd (Ahmadi et al. 2008, 2010).

Recently, great interest has been focused on the design and synthesis of coordination polymers because of their intriguing network topologies and promising applications (Yaghi et al. 1998). Hence we have employed 2,2'-oxydibenzoic (odb) and dbp as ligands in this work.

In the title complex the Cu2+ ion is is pentacoordinated, with two N atoms of chelating 5,5'-dimethyl-2,2'-bipyridine (dbp) ligand and two O atoms of two different odb ligands in the basal plane and the O atom of water molecule completing the square-pyramidal geometry from the apical site (Fig. 1). The atoms N1, N2, O5 and O2i [Symmetry code: (i) -x+1, y-1/2, -z+1/2] are nearly coplanar, with a mean deviation from the least-squares plane of 0.0518 (11) Å, and the Cu atom is displaced by 0.1507 (11) Å from this plane towards the apical O atom. Further coordination via the 2,2'-oxydibenzoate anions forms a one-dimensional coordination polymer extending parallel to [010]. In the crystal structure, O—H···O hydrogen bonds link the molecules into a 2D supramolecular structure as shown in Fig. 2.

Experimental

Copper(II) acetate dihydrate (0.5 mmol), 5,5'-dimethyl-2,2'-bipyridine (0.5 mmol) and 2,2'-oxydibenzoic acid (0.5 mmol) were placed in a 30 ml teflon-lined, stainless-steel Parr autoclave together with water (20 ml). The autoclave was heated at 393 K for a week and was subsequently cooled slowly to room temperature. Blue single crystals were obtained.

Refinement

The approximate positions of the water H atoms, obtained from a difference Fourier map, were restrained to ideal water geometry and fixed in the final stages of refinement (O—H 0.85 Å). All other H atoms were included in calculated positions, with C—H bond lengths fixed at 0.93Å (aryl group), 0.96 Å (methyl CH3) and were refined in the riding-model approximation. Uiso(H) values were calculated at 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C, O) for the other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. [Symmetry code: (i) -x+1, y-1/2, -z+1/2]
Fig. 2.
A view of the structure along the c axis. dashed lines indicate the hydrogen-bonding.

Crystal data

[Cu(C14H8O5)(C12H12N2)(H2O)]F(000) = 1076
Mr = 522.00Dx = 1.496 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2235 reflections
a = 7.4235 (11) Åθ = 2.1–25.6°
b = 17.475 (3) ŵ = 0.99 mm1
c = 18.053 (3) ÅT = 296 K
β = 98.188 (3)°Block, blue
V = 2318.0 (6) Å30.20 × 0.18 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4071 independent reflections
Radiation source: fine-focus sealed tube3150 reflections with I > 2σ(I)
graphiteRint = 0.042
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −8→8
Tmin = 0.827, Tmax = 0.858k = −20→10
12080 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.050P)2 + 0.0178P] where P = (Fo2 + 2Fc2)/3
4071 reflections(Δ/σ)max = 0.001
318 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.41788 (4)0.62384 (2)0.109714 (18)0.03306 (13)
N10.3306 (3)0.65433 (15)0.00279 (13)0.0377 (6)
N20.3278 (3)0.52235 (13)0.06863 (12)0.0323 (5)
O10.4265 (2)0.93932 (11)0.19835 (11)0.0386 (5)
O20.4863 (3)1.08114 (12)0.29366 (10)0.0418 (5)
O30.1882 (3)1.09819 (15)0.29298 (12)0.0577 (6)
O40.3634 (3)0.77983 (13)0.19838 (16)0.0715 (8)
O50.5373 (3)0.72067 (11)0.12721 (11)0.0426 (5)
O1W0.1358 (3)0.66083 (13)0.14824 (12)0.0539 (6)
H1WA0.16900.70230.17080.065*
H1WB0.04850.64480.16980.065*
C10.3209 (4)1.08195 (16)0.26283 (15)0.0336 (7)
C20.2924 (3)1.06403 (16)0.18006 (15)0.0299 (6)
C30.1997 (4)1.11672 (18)0.13170 (17)0.0416 (7)
H30.15221.16050.15100.050*
C40.1763 (5)1.1054 (2)0.05493 (19)0.0591 (10)
H40.11611.14190.02300.071*
C50.2424 (5)1.0401 (3)0.02647 (19)0.0661 (11)
H50.22841.0327−0.02500.079*
C60.3294 (4)0.9855 (2)0.07367 (19)0.0532 (9)
H60.37130.94070.05420.064*
C70.3543 (3)0.99754 (17)0.15049 (16)0.0332 (7)
C80.6009 (4)0.91544 (17)0.18894 (15)0.0319 (6)
C90.7378 (4)0.97019 (18)0.19715 (17)0.0424 (8)
H90.71101.02070.20760.051*
C100.9132 (4)0.9495 (2)0.18986 (19)0.0504 (9)
H101.00520.98600.19570.060*
C110.9531 (4)0.8748 (2)0.17389 (18)0.0500 (9)
H111.07160.86090.16870.060*
C120.8167 (4)0.82106 (18)0.16569 (16)0.0396 (7)
H120.84450.77080.15460.048*
C130.6376 (3)0.83974 (17)0.17359 (14)0.0299 (6)
C140.4984 (4)0.77630 (16)0.16651 (16)0.0327 (7)
C150.3015 (5)0.8219 (2)−0.1299 (2)0.0723 (12)
H15A0.35080.8548−0.08940.108*
H15B0.18300.8399−0.15090.108*
H15C0.38020.8222−0.16770.108*
C160.2864 (4)0.7414 (2)−0.10098 (19)0.0529 (9)
C170.2245 (5)0.6804 (3)−0.14685 (19)0.0643 (11)
H170.18990.6886−0.19780.077*
C180.2136 (4)0.6083 (2)−0.11798 (18)0.0552 (9)
H180.17120.5678−0.14910.066*
C190.2660 (4)0.59610 (19)−0.04244 (16)0.0381 (7)
C200.3397 (4)0.7244 (2)−0.02617 (18)0.0474 (8)
H200.38420.76390.00580.057*
C210.2604 (4)0.52224 (18)−0.00508 (16)0.0351 (7)
C220.1926 (4)0.4554 (2)−0.03889 (18)0.0482 (9)
H220.14710.4551−0.08960.058*
C230.1919 (4)0.38961 (19)0.0019 (2)0.0527 (9)
H230.14530.3448−0.02120.063*
C240.2601 (4)0.38895 (18)0.07754 (19)0.0452 (8)
C250.2616 (5)0.3185 (2)0.1245 (2)0.0670 (11)
H25A0.36770.31870.16170.100*
H25B0.26370.27400.09330.100*
H25C0.15440.31740.14860.100*
C260.3266 (4)0.45785 (18)0.10777 (17)0.0404 (7)
H260.37330.45920.15840.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0383 (2)0.0272 (2)0.0334 (2)−0.00240 (16)0.00395 (14)−0.00399 (17)
N10.0390 (14)0.0389 (15)0.0359 (14)−0.0015 (12)0.0077 (11)0.0017 (12)
N20.0340 (12)0.0318 (14)0.0316 (13)−0.0041 (11)0.0064 (10)−0.0061 (11)
O10.0331 (11)0.0267 (11)0.0592 (13)0.0026 (9)0.0180 (9)0.0021 (10)
O20.0402 (12)0.0403 (13)0.0417 (12)0.0130 (10)−0.0054 (9)−0.0067 (10)
O30.0453 (13)0.0819 (18)0.0500 (13)0.0019 (12)0.0210 (11)−0.0035 (13)
O40.0533 (14)0.0459 (15)0.126 (2)−0.0231 (12)0.0493 (15)−0.0352 (15)
O50.0499 (12)0.0283 (11)0.0514 (13)−0.0063 (10)0.0133 (10)−0.0108 (10)
O1W0.0399 (12)0.0536 (15)0.0716 (16)−0.0091 (11)0.0198 (11)−0.0203 (13)
C10.0371 (17)0.0235 (15)0.0408 (17)0.0012 (13)0.0078 (14)0.0056 (14)
C20.0235 (13)0.0295 (16)0.0369 (16)−0.0052 (12)0.0049 (11)0.0030 (13)
C30.0399 (16)0.0364 (18)0.0472 (18)0.0048 (15)0.0013 (14)0.0037 (15)
C40.056 (2)0.069 (3)0.047 (2)0.0104 (19)−0.0089 (17)0.0112 (19)
C50.061 (2)0.098 (3)0.0355 (19)−0.001 (2)−0.0050 (17)−0.007 (2)
C60.0492 (19)0.060 (2)0.051 (2)−0.0011 (18)0.0081 (16)−0.0185 (19)
C70.0255 (14)0.0331 (17)0.0407 (17)−0.0081 (12)0.0034 (12)0.0026 (14)
C80.0298 (15)0.0320 (17)0.0351 (15)−0.0048 (13)0.0086 (12)0.0002 (14)
C90.0422 (18)0.0319 (17)0.0544 (19)−0.0101 (14)0.0115 (14)−0.0043 (15)
C100.0339 (17)0.051 (2)0.066 (2)−0.0191 (16)0.0065 (15)0.0003 (19)
C110.0255 (15)0.064 (2)0.060 (2)−0.0004 (17)0.0041 (14)0.006 (2)
C120.0325 (16)0.0381 (18)0.0482 (18)0.0053 (14)0.0057 (13)−0.0021 (15)
C130.0275 (15)0.0310 (16)0.0308 (15)0.0000 (12)0.0027 (11)−0.0025 (13)
C140.0323 (16)0.0254 (16)0.0395 (16)0.0004 (13)0.0015 (13)−0.0001 (14)
C150.070 (2)0.075 (3)0.070 (3)−0.008 (2)0.005 (2)0.034 (2)
C160.0409 (18)0.067 (2)0.051 (2)−0.0076 (18)0.0062 (15)0.0202 (19)
C170.059 (2)0.092 (3)0.039 (2)−0.020 (2)−0.0020 (16)0.014 (2)
C180.057 (2)0.069 (3)0.0380 (19)−0.0188 (19)0.0025 (16)−0.0017 (18)
C190.0316 (16)0.050 (2)0.0341 (16)−0.0065 (14)0.0096 (13)−0.0049 (15)
C200.0485 (19)0.048 (2)0.0455 (19)−0.0052 (16)0.0052 (15)0.0036 (17)
C210.0258 (14)0.0451 (19)0.0357 (17)−0.0042 (13)0.0090 (12)−0.0073 (15)
C220.0474 (19)0.058 (2)0.0389 (18)−0.0118 (17)0.0065 (14)−0.0176 (18)
C230.056 (2)0.038 (2)0.064 (2)−0.0134 (16)0.0109 (17)−0.0206 (18)
C240.0435 (18)0.0355 (19)0.058 (2)−0.0045 (15)0.0119 (15)−0.0116 (16)
C250.083 (3)0.034 (2)0.082 (3)−0.0090 (19)0.008 (2)−0.003 (2)
C260.0398 (16)0.0388 (19)0.0421 (18)−0.0015 (15)0.0046 (13)−0.0065 (16)

Geometric parameters (Å, °)

Cu1—O51.915 (2)C9—H90.9300
Cu1—O2i1.9370 (19)C10—C111.377 (5)
Cu1—N22.000 (2)C10—H100.9300
Cu1—N12.018 (2)C11—C121.374 (4)
Cu1—O1W2.388 (2)C11—H110.9300
N1—C201.336 (4)C12—C131.396 (4)
N1—C191.349 (4)C12—H120.9300
N2—C261.331 (4)C13—C141.508 (4)
N2—C211.353 (4)C15—C161.510 (5)
O1—C71.392 (3)C15—H15A0.9600
O1—C81.394 (3)C15—H15B0.9600
O2—C11.274 (3)C15—H15C0.9600
O2—Cu1ii1.9371 (19)C16—C201.384 (4)
O3—C11.225 (3)C16—C171.388 (5)
O4—C141.226 (3)C17—C181.371 (5)
O5—C141.261 (3)C17—H170.9300
O1W—H1WA0.8500C18—C191.380 (4)
O1W—H1WB0.8500C18—H180.9300
C1—C21.512 (4)C19—C211.460 (4)
C2—C31.383 (4)C20—H200.9300
C2—C71.384 (4)C21—C221.380 (4)
C3—C41.386 (4)C22—C231.366 (5)
C3—H30.9300C22—H220.9300
C4—C51.370 (5)C23—C241.387 (5)
C4—H40.9300C23—H230.9300
C5—C61.378 (5)C24—C261.384 (4)
C5—H50.9300C24—C251.494 (5)
C6—C71.389 (4)C25—H25A0.9600
C6—H60.9300C25—H25B0.9600
C8—C131.386 (4)C25—H25C0.9600
C8—C91.388 (4)C26—H260.9300
C9—C101.376 (4)
O5—Cu1—O2i95.15 (8)C12—C11—H11120.2
O5—Cu1—N2165.19 (9)C10—C11—H11120.2
O2i—Cu1—N293.03 (9)C11—C12—C13121.8 (3)
O5—Cu1—N190.14 (10)C11—C12—H12119.1
O2i—Cu1—N1171.74 (10)C13—C12—H12119.1
N2—Cu1—N180.48 (10)C8—C13—C12117.4 (3)
O5—Cu1—O1W96.74 (8)C8—C13—C14124.5 (2)
O2i—Cu1—O1W93.83 (8)C12—C13—C14118.1 (3)
N2—Cu1—O1W95.01 (8)O4—C14—O5124.8 (3)
N1—Cu1—O1W91.83 (9)O4—C14—C13121.3 (3)
C20—N1—C19119.2 (3)O5—C14—C13113.9 (2)
C20—N1—Cu1126.1 (2)C16—C15—H15A109.5
C19—N1—Cu1114.7 (2)C16—C15—H15B109.5
C26—N2—C21119.4 (3)H15A—C15—H15B109.5
C26—N2—Cu1125.53 (19)C16—C15—H15C109.5
C21—N2—Cu1115.0 (2)H15A—C15—H15C109.5
C7—O1—C8115.2 (2)H15B—C15—H15C109.5
C1—O2—Cu1ii126.63 (18)C20—C16—C17116.2 (3)
C14—O5—Cu1129.49 (18)C20—C16—C15120.8 (4)
Cu1—O1W—H1WA99.4C17—C16—C15123.0 (3)
Cu1—O1W—H1WB143.3C18—C17—C16120.8 (3)
H1WA—O1W—H1WB104.5C18—C17—H17119.6
O3—C1—O2126.5 (3)C16—C17—H17119.6
O3—C1—C2118.6 (3)C17—C18—C19119.6 (3)
O2—C1—C2114.8 (2)C17—C18—H18120.2
C3—C2—C7118.6 (3)C19—C18—H18120.2
C3—C2—C1118.2 (3)N1—C19—C18120.5 (3)
C7—C2—C1123.2 (3)N1—C19—C21114.7 (2)
C2—C3—C4121.1 (3)C18—C19—C21124.8 (3)
C2—C3—H3119.5N1—C20—C16123.7 (3)
C4—C3—H3119.5N1—C20—H20118.1
C5—C4—C3119.5 (3)C16—C20—H20118.1
C5—C4—H4120.2N2—C21—C22119.8 (3)
C3—C4—H4120.2N2—C21—C19115.0 (3)
C4—C5—C6120.4 (3)C22—C21—C19125.2 (3)
C4—C5—H5119.8C23—C22—C21120.2 (3)
C6—C5—H5119.8C23—C22—H22119.9
C5—C6—C7119.8 (3)C21—C22—H22119.9
C5—C6—H6120.1C22—C23—C24120.6 (3)
C7—C6—H6120.1C22—C23—H23119.7
C2—C7—C6120.5 (3)C24—C23—H23119.7
C2—C7—O1119.6 (2)C26—C24—C23116.2 (3)
C6—C7—O1119.6 (3)C26—C24—C25121.3 (3)
C13—C8—C9121.2 (3)C23—C24—C25122.5 (3)
C13—C8—O1121.5 (2)C24—C25—H25A109.5
C9—C8—O1117.3 (3)C24—C25—H25B109.5
C10—C9—C8119.8 (3)H25A—C25—H25B109.5
C10—C9—H9120.1C24—C25—H25C109.5
C8—C9—H9120.1H25A—C25—H25C109.5
C9—C10—C11120.3 (3)H25B—C25—H25C109.5
C9—C10—H10119.9N2—C26—C24123.8 (3)
C11—C10—H10119.9N2—C26—H26118.1
C12—C11—C10119.5 (3)C24—C26—H26118.1
O5—Cu1—N1—C20−10.9 (3)C10—C11—C12—C13−0.4 (5)
N2—Cu1—N1—C20−179.3 (3)C9—C8—C13—C12−0.9 (4)
O1W—Cu1—N1—C2085.9 (3)O1—C8—C13—C12−179.5 (2)
O5—Cu1—N1—C19165.91 (19)C9—C8—C13—C14177.8 (3)
N2—Cu1—N1—C19−2.56 (19)O1—C8—C13—C14−0.8 (4)
O1W—Cu1—N1—C19−97.33 (19)C11—C12—C13—C81.0 (4)
O5—Cu1—N2—C26131.0 (3)C11—C12—C13—C14−177.7 (3)
O2i—Cu1—N2—C267.5 (2)Cu1—O5—C14—O4−4.9 (4)
N1—Cu1—N2—C26−177.6 (2)Cu1—O5—C14—C13173.43 (17)
O1W—Cu1—N2—C26−86.6 (2)C8—C13—C14—O4−26.1 (4)
O5—Cu1—N2—C21−50.3 (4)C12—C13—C14—O4152.6 (3)
O2i—Cu1—N2—C21−173.76 (19)C8—C13—C14—O5155.5 (3)
N1—Cu1—N2—C211.10 (18)C12—C13—C14—O5−25.8 (4)
O1W—Cu1—N2—C2192.12 (19)C20—C16—C17—C181.6 (5)
O2i—Cu1—O5—C14−76.3 (3)C15—C16—C17—C18179.9 (3)
N2—Cu1—O5—C14160.5 (3)C16—C17—C18—C19−0.4 (5)
N1—Cu1—O5—C14110.1 (3)C20—N1—C19—C181.4 (4)
O1W—Cu1—O5—C1418.2 (3)Cu1—N1—C19—C18−175.6 (2)
Cu1ii—O2—C1—O3−13.0 (4)C20—N1—C19—C21−179.5 (3)
Cu1ii—O2—C1—C2164.26 (18)Cu1—N1—C19—C213.5 (3)
O3—C1—C2—C353.5 (4)C17—C18—C19—N1−1.2 (5)
O2—C1—C2—C3−124.0 (3)C17—C18—C19—C21179.9 (3)
O3—C1—C2—C7−126.4 (3)C19—N1—C20—C16−0.2 (5)
O2—C1—C2—C756.2 (4)Cu1—N1—C20—C16176.5 (2)
C7—C2—C3—C4−3.1 (4)C17—C16—C20—N1−1.3 (5)
C1—C2—C3—C4177.0 (3)C15—C16—C20—N1−179.6 (3)
C2—C3—C4—C51.5 (5)C26—N2—C21—C22−0.4 (4)
C3—C4—C5—C60.9 (6)Cu1—N2—C21—C22−179.2 (2)
C4—C5—C6—C7−1.6 (5)C26—N2—C21—C19179.2 (2)
C3—C2—C7—C62.4 (4)Cu1—N2—C21—C190.4 (3)
C1—C2—C7—C6−177.8 (3)N1—C19—C21—N2−2.6 (4)
C3—C2—C7—O1−171.6 (2)C18—C19—C21—N2176.4 (3)
C1—C2—C7—O18.3 (4)N1—C19—C21—C22177.0 (3)
C5—C6—C7—C20.0 (5)C18—C19—C21—C22−4.0 (5)
C5—C6—C7—O1173.9 (3)N2—C21—C22—C230.5 (4)
C8—O1—C7—C2−125.2 (3)C19—C21—C22—C23−179.1 (3)
C8—O1—C7—C660.8 (3)C21—C22—C23—C24−0.4 (5)
C7—O1—C8—C13−123.0 (3)C22—C23—C24—C260.1 (5)
C7—O1—C8—C958.4 (3)C22—C23—C24—C25179.8 (3)
C13—C8—C9—C100.2 (4)C21—N2—C26—C240.1 (4)
O1—C8—C9—C10178.8 (3)Cu1—N2—C26—C24178.8 (2)
C8—C9—C10—C110.5 (5)C23—C24—C26—N20.0 (5)
C9—C10—C11—C12−0.4 (5)C25—C24—C26—N2−179.7 (3)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O40.851.992.750 (3)148
O1W—H1WB···O3iii0.852.132.972 (3)171

Symmetry codes: (iii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2034).

References

  • Ahmadi, R., Kalateh, K. & Amani, V. (2010). Acta Cryst. E66, m562. [PMC free article] [PubMed]
  • Ahmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233. [PMC free article] [PubMed]
  • Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dong, X.-Y., Xu, X. & Yang, L. (2009). Acta Cryst. E65, m1290. [PMC free article] [PubMed]
  • Gong, H.-Y., Bai, Y. & Liu, W. (2009). Acta Cryst. E65, m1589. [PMC free article] [PubMed]
  • Hong, J. (2008a). Acta Cryst. E64, m17. [PMC free article] [PubMed]
  • Hong, J. (2008b). Acta Cryst. E64, m21. [PMC free article] [PubMed]
  • Kalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353–m1354. [PMC free article] [PubMed]
  • Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, W., Zhang, D.-J., Fan, Y., Song, T.-Y. & Zhang, P. (2010). Acta Cryst. E66, m462. [PMC free article] [PubMed]
  • Xu, X., Wang, P. & Shi, S. (2008a). Acta Cryst. E64, m90. [PMC free article] [PubMed]
  • Xu, M.-L., Zhou, R., Wang, G.-Y. & Ng, S. W. (2008b). Acta Cryst. E64, m712–m713. [PMC free article] [PubMed]
  • Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.
  • Yu, C.-H. (2008). Acta Cryst E64, m1106. [PMC free article] [PubMed]
  • Zhao, Q.-L. & Bai, H.-F. (2009). Acta Cryst. E65, m866. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography