PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m933.
Published online 2010 July 14. doi:  10.1107/S1600536810026188
PMCID: PMC3007524

catena-Poly[[dibromidozinc(II)]-μ-4-(3-pyrid­yl)-4H-1,2,4-triazole]

Abstract

The title complex, [ZnBr2(C7H6N4)]n, was formed under hydro­thermal conditions using the ligand 4-(3-pyrid­yl)-4H-1,2,4-triazole (L). The unique ZnII ion is coordinated by one triazole N atom, one pyridine N atom and two Br atoms in a slightly distorted tetra­hedral coordination environment. Symmetry-related ZnII ions are connected by bridging L ligands into chains parallel to [001] in which the Zn(...)Zn separation is 8.643 (7) Å. In the crystal structure, weak inter­molecular C—H(...)Br hydrogen bonds link the chains into a three-dimensional network.

Related literature

For the preparation of the ligand used to synthesize the title compound, see: Gioia et al. (1988 [triangle]). For background literature on supra­molecular polymer chemistry, see: Lehn (1995 [triangle]); Ouahab (1997 [triangle]). For complexes incorporating 4-3-pyridyl-1,2,4-triazole ligands, see: Moulton & Zaworotko (2001 [triangle]); Pan et al. (2001 [triangle]); Prior & Rosseinsky (2001 [triangle]); Ma et al. (2001 [triangle]); Ding et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m933-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C7H6N4)]
  • M r = 371.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m933-efi1.jpg
  • a = 6.787 (6) Å
  • b = 18.769 (15) Å
  • c = 8.643 (7) Å
  • β = 101.316 (11)°
  • V = 1079.6 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 9.64 mm−1
  • T = 293 K
  • 0.18 × 0.12 × 0.06 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.522, T max = 1.000
  • 5681 measured reflections
  • 1903 independent reflections
  • 1510 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.090
  • S = 1.10
  • 1903 reflections
  • 128 parameters
  • H-atom parameters constrained
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026188/lh5068sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026188/lh5068Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This present work was supported financially by Tianjin Educational Committee (20090504).

supplementary crystallographic information

Comment

Supramolecular polymer chemistry is a branch of modern science which is developing rapidly through the combination of polymer chemistry with supramolecular chemistry (Lehn, 1995; Ouahab, 1997). Recently, considerable efforts have been devoted to crystal engineering of supramolecular architecture sustained by coordination covalent bonding, hydrogen bonding or some molecular interaction and their combination. The compounds formed are of interest owing to their fascinating structural diversity and potential application in design of porous materials with novel inclusion or reactivity properties and in supramolecular devices such as sensors and indicators (Moulton & Zaworotko, 2001; Pan et al., 2001; Prior & Rosseinsky, 2001; Ma et al., 2001; Ding et al., 2006). We report herein the crystal structure of the title complex.

A view of the coordination around the ZnII ion of the title compound is shown in Fig. 1. The unique ZnII ion is coordinated by one triazole nitrogen atom, one pyridine nitrogen atom and two bromine ligands in a slightly distorted tetrahedral coordination environment. Symmetry related ZnII ions are connected by bridging L ligands to form one-dimensional chains (Fig. 2) in which the Zn···Zn separation is 8.643 (7) Å. In the crystal structure, weak intermolecular C—H···Br hydrogen bonds (Table 1) exist between L triazole rings and bromine atoms pairs of inversion related 1-D chains, which are further assembled through C—H···Br interactions to form a 3-D network (see Fig. 3).

Experimental

The ligand L was prepared according to the previously reported literature methods (Gioia, et al., 1988). A mixture of ZnBr2 (22.5 mg, 0.1 mmol), L (14.6 mg, 0.1 mmol) and water (10 ml) was stirred for 5 h and filtered. The filtrate was kept in a CaCl2 desiccator. Suitable single crystals for X-ray diffraction study were obtained after a few days, yield 23% (based on Zn(II) salts). Anal. Calc. for C7H6Br2N4Zn: C, 22.64%; H, 1.63%; N, 15.09%. Found: C, 22.75%; H, 1.87%; N, 15.14%. FT—IR (KBr): 3115 (w), 3050 (w), 2940(w), 1540(s), 1473(m), 1395(m), 1368(w), 1244(w), 1199(s), 1075(s), 1030(s), 978(w), 945(w), 869(s), 684(w), 640 (s), 489(m), 425 (w) cm-1.

Refinement

H atoms were positioned geometrically and were allowed to ride on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of the coordination around the ZnII ion of the title 1-D compound [symmetry code: (A) x, y, z - 1].
Fig. 2.
One-dimensional structure of the title compound
Fig. 3.
Part of the crystal structure of the title compound showing hydrogen bonds as dashed lines.

Crystal data

[ZnBr2(C7H6N4)]F(000) = 704
Mr = 371.35Dx = 2.285 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1387 reflections
a = 6.787 (6) Åθ = 2.6–24.1°
b = 18.769 (15) ŵ = 9.64 mm1
c = 8.643 (7) ÅT = 293 K
β = 101.316 (11)°Block, colorless
V = 1079.6 (15) Å30.18 × 0.12 × 0.06 mm
Z = 4

Data collection

Bruker APEXII diffractometer1903 independent reflections
Radiation source: fine-focus sealed tube1510 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→8
Tmin = 0.522, Tmax = 1.000k = −22→22
5681 measured reflectionsl = −10→7

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.090w = 1/[σ2(Fo2) + (0.0105P)2 + 4.1488P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1903 reflectionsΔρmax = 0.65 e Å3
128 parametersΔρmin = −0.60 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00010 (0)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.39470 (11)0.63872 (4)0.68138 (8)0.0337 (2)
Br10.61578 (12)0.54147 (4)0.76801 (9)0.0506 (3)
Br20.54852 (11)0.74575 (4)0.62834 (9)0.0469 (2)
N10.2184 (8)0.6476 (3)0.8432 (5)0.0334 (12)
N20.0687 (8)0.6990 (3)0.8251 (6)0.0435 (14)
N30.0872 (8)0.6435 (3)1.0539 (5)0.0324 (12)
N40.1730 (8)0.6178 (3)1.4833 (5)0.0339 (12)
C1−0.1373 (10)0.5977 (4)1.2212 (8)0.0419 (17)
H1−0.23880.59071.13320.050*
C2−0.1642 (11)0.5823 (4)1.3737 (8)0.0513 (19)
H2−0.28680.56531.39070.062*
C3−0.0079 (10)0.5926 (4)1.4974 (8)0.0415 (17)
H3−0.02790.58151.59800.050*
C40.2014 (10)0.6340 (3)1.3381 (7)0.0373 (15)
H40.32480.65201.32510.045*
C50.0513 (10)0.6243 (3)1.2085 (7)0.0333 (15)
C6−0.0101 (11)0.6954 (4)0.9528 (8)0.0451 (17)
H6−0.11550.72350.97220.054*
C70.2253 (9)0.6162 (3)0.9792 (7)0.0322 (14)
H70.31420.57991.01880.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0344 (4)0.0455 (5)0.0238 (4)−0.0007 (3)0.0122 (3)0.0026 (3)
Br10.0527 (5)0.0476 (4)0.0534 (5)0.0094 (4)0.0153 (4)0.0096 (3)
Br20.0419 (4)0.0489 (4)0.0529 (5)−0.0042 (3)0.0168 (3)0.0093 (3)
N10.033 (3)0.047 (3)0.021 (2)0.002 (3)0.007 (2)0.003 (2)
N20.042 (4)0.055 (4)0.036 (3)0.011 (3)0.015 (3)0.012 (3)
N30.033 (3)0.045 (3)0.022 (2)0.000 (2)0.010 (2)0.002 (2)
N40.041 (3)0.042 (3)0.023 (3)−0.001 (3)0.015 (2)0.002 (2)
C10.038 (4)0.057 (4)0.031 (3)−0.006 (3)0.009 (3)−0.002 (3)
C20.044 (5)0.067 (5)0.045 (4)−0.014 (4)0.014 (4)0.002 (4)
C30.044 (4)0.054 (4)0.029 (3)−0.010 (3)0.013 (3)0.006 (3)
C40.041 (4)0.047 (4)0.029 (3)−0.002 (3)0.019 (3)0.002 (3)
C50.042 (4)0.039 (3)0.021 (3)−0.002 (3)0.013 (3)−0.003 (3)
C60.041 (4)0.052 (4)0.046 (4)0.011 (3)0.019 (3)0.006 (3)
C70.036 (4)0.038 (3)0.023 (3)0.003 (3)0.008 (3)0.000 (3)

Geometric parameters (Å, °)

Zn1—N12.018 (5)N4—Zn1ii2.083 (5)
Zn1—N4i2.083 (5)C1—C21.396 (9)
Zn1—Br22.3502 (18)C1—C51.397 (9)
Zn1—Br12.3880 (17)C1—H10.9300
N1—C71.308 (7)C2—C31.364 (9)
N1—N21.388 (7)C2—H20.9300
N2—C61.319 (8)C3—H30.9300
N3—C71.339 (8)C4—C51.370 (9)
N3—C61.386 (8)C4—H40.9300
N3—C51.450 (7)C6—H60.9300
N4—C41.341 (7)C7—H70.9300
N4—C31.343 (8)
N1—Zn1—N4i98.9 (2)C3—C2—C1119.0 (6)
N1—Zn1—Br2114.26 (15)C3—C2—H2120.5
N4i—Zn1—Br2106.11 (14)C1—C2—H2120.5
N1—Zn1—Br1105.51 (15)N4—C3—C2124.2 (6)
N4i—Zn1—Br1114.96 (15)N4—C3—H3117.9
Br2—Zn1—Br1116.02 (7)C2—C3—H3117.9
C7—N1—N2108.1 (5)N4—C4—C5120.9 (6)
C7—N1—Zn1131.6 (4)N4—C4—H4119.5
N2—N1—Zn1120.0 (4)C5—C4—H4119.5
C6—N2—N1106.1 (5)C4—C5—C1121.9 (6)
C7—N3—C6104.9 (5)C4—C5—N3119.2 (6)
C7—N3—C5127.6 (5)C1—C5—N3118.9 (5)
C6—N3—C5127.6 (5)N2—C6—N3110.0 (6)
C4—N4—C3117.8 (6)N2—C6—H6125.0
C4—N4—Zn1ii120.9 (4)N3—C6—H6125.0
C3—N4—Zn1ii121.1 (4)N1—C7—N3110.9 (6)
C2—C1—C5116.1 (6)N1—C7—H7124.6
C2—C1—H1122.0N3—C7—H7124.6
C5—C1—H1122.0
N4i—Zn1—N1—C7127.0 (6)N4—C4—C5—N3179.0 (5)
Br2—Zn1—N1—C7−120.8 (5)C2—C1—C5—C40.6 (10)
Br1—Zn1—N1—C77.9 (6)C2—C1—C5—N3−178.1 (6)
N4i—Zn1—N1—N2−59.6 (5)C7—N3—C5—C461.5 (9)
Br2—Zn1—N1—N252.7 (5)C6—N3—C5—C4−116.6 (7)
Br1—Zn1—N1—N2−178.7 (4)C7—N3—C5—C1−119.8 (7)
C7—N1—N2—C6−0.7 (7)C6—N3—C5—C162.1 (9)
Zn1—N1—N2—C6−175.6 (4)N1—N2—C6—N30.8 (8)
C5—C1—C2—C3−1.1 (10)C7—N3—C6—N2−0.6 (7)
C4—N4—C3—C20.1 (10)C5—N3—C6—N2177.8 (6)
Zn1ii—N4—C3—C2175.4 (6)N2—N1—C7—N30.3 (7)
C1—C2—C3—N40.8 (11)Zn1—N1—C7—N3174.4 (4)
C3—N4—C4—C5−0.7 (9)C6—N3—C7—N10.2 (7)
Zn1ii—N4—C4—C5−176.0 (5)C5—N3—C7—N1−178.3 (6)
N4—C4—C5—C10.4 (10)

Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···Br1iii0.932.923.711 (7)145
C6—H6···Br2iv0.932.933.779 (8)153

Symmetry codes: (iii) −x+1, −y+1, −z+2; (iv) x−1, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5068).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ding, B., Yi, L., Wang, Y., Cheng, P., Liao, D. Z., Yan, S. P., Jiang, Z. H., Song, H. B. & Wang, H. G. (2006). Dalton Trans. pp. 665–675. [PubMed]
  • Gioia, G. L., Bonati, F., Cingolania, A., Leonesia, D. & Lorenzottia, A. (1988). Synth. React. Inorg. Met. Org. Chem.18, 535–550.
  • Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspective Weinheim: VCH.
  • Ma, B. Q., Gao, S., Sun, H. L. & Xu, G. X. (2001). J. Chem. Soc. Dalton Trans. pp. 130–133.
  • Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [PubMed]
  • Ouahab, L. (1997). Chem. Mater.9, 1909–1926.
  • Pan, L., Ching, N., Huang, X. Y. & Li, J. (2001). Chem. Eur. J.7, 4431–4437. [PubMed]
  • Prior, T. J. & Rosseinsky, M. J. (2001). Chem. Commun. pp. 1222–1223.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography