PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1898.
Published online 2010 July 3. doi:  10.1107/S1600536810024979
PMCID: PMC3007520

Methyl 4-isonicotinamido­benzoate monohydrate

Abstract

The title compound, C14H12N2O3·H2O, synthesized by the reaction of methyl 4-amino­benzoate with isonicotinoyl chloride hydro­chloride, is relatively planar, with the pyridine ring being inclined by 7.46 (7)° to the benzene ring. In the crystal, the methyl 4-isonicotinamido­benzoate mol­ecules are inter­linked by water mol­ecules via N—H(...)O, O—H(...)N and O—H(...)O hydrogen bonds, leading to the formation of a double-chain ribbon-like structure.

Related literature

For the synthesis of methyl 4-amino­benzoate and isonicotinoyl chloride hydro­chloride, see: Margiotta et al. (2008 [triangle]). For the use of such ligands in coordination chemistry, see: Saeed et al. (2010 [triangle]); Kitagawa (2005 [triangle]). For standard bond distances, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1898-scheme1.jpg

Experimental

Crystal data

  • C14H12N2O3·H2O
  • M r = 274.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1898-efi1.jpg
  • a = 6.8836 (3) Å
  • b = 8.8810 (4) Å
  • c = 10.9658 (5) Å
  • α = 96.062 (1)°
  • β = 90.896 (1)°
  • γ = 95.854 (1)°
  • V = 662.91 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.48 × 0.37 × 0.27 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.952, T max = 0.973
  • 7689 measured reflections
  • 2318 independent reflections
  • 1968 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.102
  • S = 1.06
  • 2318 reflections
  • 181 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810024979/su2171sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024979/su2171Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Science Foundation of China (NSFC No. 20801018) and Shanghai Education Development Foundation for financial support (grant No. 2008 C G31).

supplementary crystallographic information

Comment

The title compound was synthesized as a potential ligand for use in coordination chemistry (Saeed et al., 2010; Kitagawa, 2005). It was synthesized via the reacton of methyl 4-benzoate with isonicotinoyl.HCl and contains both a coordination site [the N atom in the pyridyl ring], and a guest interaction site [the amide group].

The molecular structure of the title compound is illustrated in Fig. 1. The bond distances are normal (Allen et al., 1987), and the molecule is relatively planar with the dihedral angle involving the pyridine and benezene rings being 7.46 (7)°.

In the crystal molecules are connected by hydrogen bonds, with the water molecule H-atoms serving as hydrogen-bond donors and the pyridyl nitrogen and ester oxygen atoms serving as acceptors (Fig. 2 and Table 1). At the same time, the amide nitrogen atom acts as a hydrogen-bond donor and the water oxygen atom as a hydrogen-bond acceptor. In this way a double stranded ribbon-like structure is formed with base vector [11-1].

Experimental

Methyl 4-aminobenzoate and isonicotinoyl chloride hydrochloride were synthesized using the literature methods (Margiotta et al., 2008). Methy 4-aminobenzoate (3.02 g, 20 mmol), isonicotinoyl chloride hydrochloride (3.56 g, 20 mmol), and K2CO3 (5.52 g, 49 mmol) were mixed in acetone (100 ml). The mixture was kept at 343 K for 8 h with constant stirring. The white precipitate that formed was filtered off and washed with distilled water and then dried. Colourless block-like crystals, suitable for x-ray analysis, were obtained from a DMF-methanol solution (1:1; v:v) via vapour evaporation at room temperature after two weeks.

Refinement

The water molecule H-atoms were located in a difference Fourier map and were refined with Uiso(H) = 1.5Ueq(Ow) and a restrained bond distance of 0.85 (2) Å. The remaining H-atoms were positioned geometrically and refined using a riding model: N-H = 0.86 Å, C—H = 0.93–0.96 Å with Uiso(H) = k × Ueq(N,C), where k = 1.2 for NH, CH and CH2 H-atoms, and k = 1.5 for CH3 H-atoms.

Figures

Fig. 1.
The molecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
A view of the crystal packing of the title compound, showing one layer of molecules connected by O—H···N, O—H···O and N—H···O hydrogen bonds (dashed lines) ...

Crystal data

C14H12N2O3·H2OZ = 2
Mr = 274.27F(000) = 288
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8836 (3) ÅCell parameters from 4652 reflections
b = 8.8810 (4) Åθ = 2.3–28.3°
c = 10.9658 (5) ŵ = 0.10 mm1
α = 96.062 (1)°T = 296 K
β = 90.896 (1)°Block, colourless
γ = 95.854 (1)°0.48 × 0.37 × 0.27 mm
V = 662.91 (5) Å3

Data collection

Bruker SMART 1K CCD area-detector diffractometer2318 independent reflections
Radiation source: fine-focus sealed tube1968 reflections with I > 2σ(I)
graphiteRint = 0.015
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 1.9°
thin–slice ω scansh = −8→8
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −10→10
Tmin = 0.952, Tmax = 0.973l = −13→12
7689 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0526P)2 + 0.1234P] where P = (Fo2 + 2Fc2)/3
2318 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.14 e Å3
3 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.02099 (15)0.81758 (12)0.39503 (10)0.0431 (3)
H1A−0.09560.78300.36980.052*
N2−0.34705 (19)0.52096 (14)0.70330 (12)0.0576 (3)
O30.61235 (16)1.21607 (13)0.08752 (10)0.0623 (3)
O20.33143 (18)1.24867 (15)−0.00513 (11)0.0772 (4)
O10.23987 (15)0.81573 (15)0.55168 (10)0.0713 (4)
O1W0.30526 (15)1.33795 (13)−0.24537 (9)0.0662 (3)
H1WA0.42231.3964−0.25160.099*
H1WB0.31421.3192−0.16770.099*
C10.7154 (3)1.3157 (2)0.00895 (17)0.0722 (5)
H1B0.85271.32510.02900.108*
H1C0.66851.41420.02070.108*
H1D0.69371.2740−0.07510.108*
C20.4195 (2)1.19167 (16)0.07065 (12)0.0507 (4)
C30.3244 (2)1.08944 (15)0.15573 (11)0.0440 (3)
C40.1229 (2)1.05719 (15)0.14751 (12)0.0480 (3)
H4A0.05211.09740.08810.058*
C50.0271 (2)0.96663 (15)0.22619 (12)0.0462 (3)
H5A−0.10790.94520.21920.055*
C60.13107 (19)0.90658 (14)0.31652 (11)0.0397 (3)
C70.3329 (2)0.93699 (16)0.32434 (12)0.0467 (3)
H7A0.40410.89630.38330.056*
C80.4280 (2)1.02781 (16)0.24441 (13)0.0479 (3)
H8A0.56331.04790.25010.057*
C90.07765 (19)0.78029 (15)0.50566 (12)0.0442 (3)
C10−0.07614 (19)0.69056 (14)0.57202 (11)0.0408 (3)
C11−0.2737 (2)0.69375 (16)0.55336 (12)0.0483 (3)
H11A−0.32010.75220.49590.058*
C12−0.4020 (2)0.60887 (18)0.62121 (14)0.0573 (4)
H12A−0.53510.61360.60860.069*
C13−0.1559 (2)0.51992 (17)0.72155 (14)0.0566 (4)
H13A−0.11370.45970.77900.068*
C14−0.0171 (2)0.60287 (16)0.66023 (13)0.0515 (4)
H14A0.11510.60020.67780.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0379 (6)0.0495 (6)0.0418 (6)−0.0031 (5)−0.0043 (4)0.0129 (5)
N20.0608 (8)0.0573 (7)0.0527 (7)−0.0070 (6)0.0120 (6)0.0074 (6)
O30.0606 (7)0.0702 (7)0.0580 (6)−0.0041 (5)0.0084 (5)0.0254 (5)
O20.0824 (9)0.0973 (9)0.0553 (7)−0.0071 (7)−0.0077 (6)0.0408 (6)
O10.0464 (6)0.1138 (10)0.0532 (6)−0.0184 (6)−0.0125 (5)0.0349 (6)
O1W0.0574 (6)0.0887 (8)0.0504 (6)−0.0217 (6)−0.0132 (5)0.0287 (5)
C10.0783 (12)0.0701 (11)0.0688 (11)−0.0096 (9)0.0164 (9)0.0245 (8)
C20.0648 (9)0.0515 (8)0.0351 (7)−0.0004 (7)0.0007 (6)0.0076 (6)
C30.0542 (8)0.0438 (7)0.0331 (6)0.0004 (6)0.0002 (6)0.0052 (5)
C40.0552 (8)0.0509 (8)0.0383 (7)0.0027 (6)−0.0103 (6)0.0115 (6)
C50.0428 (7)0.0516 (8)0.0441 (7)0.0010 (6)−0.0069 (6)0.0097 (6)
C60.0432 (7)0.0388 (6)0.0369 (6)0.0018 (5)−0.0015 (5)0.0053 (5)
C70.0429 (7)0.0545 (8)0.0457 (7)0.0061 (6)−0.0028 (6)0.0183 (6)
C80.0420 (7)0.0565 (8)0.0461 (7)0.0018 (6)0.0008 (6)0.0134 (6)
C90.0410 (7)0.0512 (7)0.0401 (7)0.0001 (6)−0.0036 (5)0.0090 (6)
C100.0428 (7)0.0423 (7)0.0365 (6)0.0013 (5)0.0017 (5)0.0034 (5)
C110.0458 (8)0.0580 (8)0.0414 (7)0.0048 (6)−0.0005 (6)0.0076 (6)
C120.0429 (8)0.0741 (10)0.0522 (8)−0.0028 (7)0.0048 (6)0.0027 (7)
C130.0642 (10)0.0536 (8)0.0553 (9)0.0076 (7)0.0097 (7)0.0193 (7)
C140.0473 (8)0.0592 (8)0.0513 (8)0.0093 (6)0.0046 (6)0.0180 (7)

Geometric parameters (Å, °)

N1—C91.3528 (17)C4—C51.3721 (19)
N1—C61.4078 (16)C4—H4A0.9300
N1—H1A0.8600C5—C61.3946 (17)
N2—C121.327 (2)C5—H5A0.9300
N2—C131.329 (2)C6—C71.3879 (18)
O3—C21.3296 (18)C7—C81.3807 (19)
O3—C11.4422 (17)C7—H7A0.9300
O2—C21.2043 (18)C8—H8A0.9300
O1—C91.2156 (16)C9—C101.5032 (18)
O1W—H1WA0.9207C10—C111.3758 (19)
O1W—H1WB0.8877C10—C141.3853 (19)
C1—H1B0.9600C11—C121.380 (2)
C1—H1C0.9600C11—H11A0.9300
C1—H1D0.9600C12—H12A0.9300
C2—O21.2043 (18)C13—C141.375 (2)
C2—C31.4833 (19)C13—H13A0.9300
C3—C41.387 (2)C14—H14A0.9300
C3—C81.3871 (19)
C9—N1—C6127.41 (11)C7—C6—C5119.24 (12)
C9—N1—H1A116.3C7—C6—N1124.08 (11)
C6—N1—H1A116.3C5—C6—N1116.69 (11)
C12—N2—C13116.54 (12)C8—C7—C6119.91 (12)
C2—O3—C1116.54 (13)C8—C7—H7A120.0
O2—O2—C20(10)C6—C7—H7A120.0
H1WA—O1W—H1WB100.2C7—C8—C3120.88 (13)
O3—C1—H1B109.5C7—C8—H8A119.6
O3—C1—H1C109.5C3—C8—H8A119.6
H1B—C1—H1C109.5O1—C9—N1124.09 (12)
O3—C1—H1D109.5O1—C9—C10120.49 (12)
H1B—C1—H1D109.5N1—C9—C10115.42 (11)
H1C—C1—H1D109.5C11—C10—C14117.50 (12)
O2—C2—O20.00 (10)C11—C10—C9123.90 (12)
O2—C2—O3123.17 (13)C14—C10—C9118.56 (12)
O2—C2—O3123.17 (13)C10—C11—C12118.98 (13)
O2—C2—C3123.63 (14)C10—C11—H11A120.5
O2—C2—C3123.63 (14)C12—C11—H11A120.5
O3—C2—C3113.20 (12)N2—C12—C11123.99 (14)
C4—C3—C8118.92 (12)N2—C12—H12A118.0
C4—C3—C2118.31 (12)C11—C12—H12A118.0
C8—C3—C2122.76 (13)N2—C13—C14123.67 (14)
C5—C4—C3120.67 (12)N2—C13—H13A118.2
C5—C4—H4A119.7C14—C13—H13A118.2
C3—C4—H4A119.7C13—C14—C10119.26 (13)
C4—C5—C6120.37 (12)C13—C14—H14A120.4
C4—C5—H5A119.8C10—C14—H14A120.4
C6—C5—H5A119.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wi0.862.102.9014 (14)155
O1W—H1WA···N2ii0.921.942.8510 (16)169
O1W—H1WB···O20.891.962.8385 (14)172

Symmetry codes: (i) −x, −y+2, −z; (ii) x+1, y+1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2171).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kitagawa, S. (2005). J. Am. Chem. Soc.129, 2607–2614. [PubMed]
  • Margiotta, N., Capitelli, F., Ostuni, R. & Natile, G. (2008). J. Inorg. Biochem.102 2078–2086 [PubMed]
  • Saeed, A., Khera, R. A., Siddiq, M. & Simpson, J. (2010). Acta Cryst. E66, o19. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography