PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2079.
Published online 2010 July 21. doi:  10.1107/S1600536810028473
PMCID: PMC3007503

2,3-Bis[(2-cyano­eth­yl)sulfan­yl]-1,4,5,8-tetra­thia­fulvalene-6,7-dicarbonitrile

Abstract

In the title compound, C14H8N4S6, the two five-membered rings lie in the same plane with an r.m.s. deviation of 0.0334 (5) Å. The crystal structure features inter­molecular S(...)N inter­actions of 3.295 (4) Å.

Related literature

For background to the electrical properties of tetra­thia­fulvalene derivatives, see: Fabre (2000 [triangle]); Batail (2004 [triangle]). For the synthesis, see Chen et al. (2005 [triangle]). For a related structure, see: Hou et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2079-scheme1.jpg

Experimental

Crystal data

  • C14H8N4S6
  • M r = 424.66
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2079-efi1.jpg
  • a = 7.3055 (15) Å
  • b = 8.5193 (17) Å
  • c = 15.386 (3) Å
  • α = 82.52 (3)°
  • β = 76.97 (3)°
  • γ = 72.43 (3)°
  • V = 887.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.77 mm−1
  • T = 290 K
  • 0.13 × 0.12 × 0.11 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.906, T max = 0.920
  • 8751 measured reflections
  • 4020 independent reflections
  • 3415 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.072
  • S = 1.09
  • 4020 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810028473/ng2799sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028473/ng2799Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Programme of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supra­molecular Structure and Materials, Jilin University.

supplementary crystallographic information

Comment

The derivants of tetrathiafulvalene (TTF), especially functionalized with hydroxyl or amine groups, have been studies extensively for their interesting electrical properties (Fabre, 2000; Batail, 2004). Herein, we report the crystal structure of the title compound.

The title compound, as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure (Hou et al., 2010). In the crystal, the two five-membered rings lie in the same plane with an r.m.s. deviation of 0.0334 (5) Å. The intermolecular S···N interactions with the distance of 3.295 (4) Å link the molecules into one-dimensional chain along a+c dirction.

Experimental

The title compound was synthesized as described in the literature for the analogous compound 2,3-Bis(butylthio)-6,7-dicarbonitrile-1,4,5,8- tetrathiafulvalene (Chen et al., 2005). Single crystals and single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum (60–90 °C) at room temperature.

Refinement

Carbon-bound H-atoms were placed in calculated positions with C—H = 0.97 Å and were included in the refinement in the riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The asymmetric of title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.

Crystal data

C14H8N4S6Z = 2
Mr = 424.66F(000) = 432
Triclinic, P1Dx = 1.589 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3055 (15) ÅCell parameters from 7465 reflections
b = 8.5193 (17) Åθ = 3.0–27.5°
c = 15.386 (3) ŵ = 0.77 mm1
α = 82.52 (3)°T = 290 K
β = 76.97 (3)°Block, black
γ = 72.43 (3)°0.13 × 0.12 × 0.11 mm
V = 887.4 (3) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer4020 independent reflections
Radiation source: fine-focus sealed tube3415 reflections with I > 2σ(I)
graphiteRint = 0.021
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −9→9
Tmin = 0.906, Tmax = 0.920k = −11→9
8751 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0391P)2 + 0.0566P] where P = (Fo2 + 2Fc2)/3
4020 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Experimental. (See detailed section in the paper)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.3844 (2)0.29787 (18)−0.14033 (10)0.0352 (3)
C2−0.2172 (2)0.25475 (16)−0.09903 (9)0.0298 (3)
C3−0.0448 (2)0.14665 (16)−0.13307 (9)0.0292 (3)
C4−0.0139 (2)0.06331 (18)−0.21181 (10)0.0343 (3)
C50.01227 (19)0.24707 (15)0.00609 (9)0.0275 (3)
C60.09080 (19)0.27024 (15)0.07290 (9)0.0276 (3)
C70.3151 (2)0.25405 (16)0.18511 (9)0.0292 (3)
C80.14603 (19)0.36850 (16)0.21550 (8)0.0277 (3)
C90.4763 (2)0.01342 (18)0.30608 (10)0.0420 (4)
H9A0.4424−0.05670.27110.050*
H9B0.5960−0.04980.32580.050*
C100.3135 (2)0.05787 (19)0.38801 (10)0.0428 (4)
H10A0.19270.12050.36900.051*
H10B0.2928−0.04240.42100.051*
C110.3623 (2)0.1552 (2)0.44647 (10)0.0433 (4)
C12−0.1478 (2)0.56270 (19)0.33796 (10)0.0423 (4)
H12A−0.17820.65170.37700.051*
H12B−0.20040.60900.28470.051*
C13−0.2516 (3)0.4360 (2)0.38520 (11)0.0539 (4)
H13A−0.39150.48870.39850.065*
H13B−0.22810.34950.34540.065*
C14−0.1865 (3)0.3618 (2)0.46835 (13)0.0552 (4)
N1−0.5150 (2)0.33249 (19)−0.17432 (10)0.0528 (4)
N20.0141 (2)−0.00538 (19)−0.27451 (10)0.0527 (4)
N30.4075 (2)0.22886 (19)0.49019 (10)0.0591 (4)
N4−0.1328 (3)0.3044 (2)0.53217 (12)0.0805 (6)
S1−0.23311 (5)0.34738 (4)−0.00256 (2)0.03481 (10)
S20.14881 (5)0.11197 (4)−0.07788 (2)0.03252 (10)
S3−0.04110 (5)0.40991 (4)0.15451 (2)0.03209 (10)
S40.33230 (5)0.16723 (4)0.08462 (2)0.03296 (10)
S50.11523 (6)0.48537 (4)0.30581 (2)0.03523 (10)
S60.52255 (5)0.19092 (5)0.23438 (2)0.03667 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0287 (7)0.0404 (7)0.0378 (8)−0.0074 (6)−0.0108 (6)−0.0051 (6)
C20.0279 (7)0.0340 (7)0.0304 (7)−0.0099 (5)−0.0106 (5)−0.0011 (5)
C30.0290 (7)0.0339 (7)0.0276 (7)−0.0101 (5)−0.0094 (5)−0.0024 (5)
C40.0298 (7)0.0405 (7)0.0339 (8)−0.0080 (6)−0.0107 (6)−0.0040 (6)
C50.0256 (6)0.0296 (6)0.0279 (6)−0.0058 (5)−0.0082 (5)−0.0033 (5)
C60.0266 (7)0.0298 (6)0.0265 (6)−0.0061 (5)−0.0071 (5)−0.0036 (5)
C70.0284 (7)0.0358 (7)0.0247 (6)−0.0073 (5)−0.0090 (5)−0.0039 (5)
C80.0299 (7)0.0316 (7)0.0232 (6)−0.0087 (5)−0.0079 (5)−0.0026 (5)
C90.0485 (9)0.0365 (8)0.0406 (8)−0.0009 (6)−0.0209 (7)−0.0058 (6)
C100.0468 (9)0.0429 (8)0.0410 (8)−0.0129 (7)−0.0177 (7)0.0061 (7)
C110.0442 (9)0.0469 (9)0.0318 (8)−0.0025 (7)−0.0095 (7)0.0002 (7)
C120.0417 (9)0.0431 (8)0.0338 (8)0.0021 (6)−0.0044 (6)−0.0126 (6)
C130.0451 (10)0.0769 (12)0.0416 (9)−0.0216 (9)0.0003 (8)−0.0158 (8)
C140.0595 (12)0.0595 (11)0.0473 (10)−0.0259 (9)0.0031 (9)−0.0079 (9)
N10.0366 (8)0.0634 (9)0.0596 (9)−0.0057 (6)−0.0221 (7)−0.0064 (7)
N20.0516 (9)0.0652 (9)0.0444 (8)−0.0106 (7)−0.0157 (7)−0.0181 (7)
N30.0653 (11)0.0632 (9)0.0453 (8)−0.0030 (8)−0.0172 (8)−0.0165 (7)
N40.1064 (17)0.0812 (13)0.0587 (11)−0.0397 (12)−0.0161 (11)0.0099 (10)
S10.02631 (18)0.0407 (2)0.0367 (2)−0.00195 (14)−0.01004 (15)−0.01111 (15)
S20.02509 (18)0.03996 (19)0.03258 (19)−0.00337 (14)−0.00934 (14)−0.01026 (15)
S30.02685 (18)0.03621 (19)0.03086 (18)−0.00055 (13)−0.00891 (14)−0.00827 (14)
S40.02534 (18)0.0421 (2)0.02945 (18)−0.00093 (14)−0.00827 (14)−0.01089 (14)
S50.0400 (2)0.03828 (19)0.02918 (18)−0.01030 (15)−0.00711 (15)−0.00961 (14)
S60.02798 (19)0.0510 (2)0.03197 (19)−0.00714 (15)−0.01181 (15)−0.00518 (16)

Geometric parameters (Å, °)

C1—N11.1341 (19)C9—C101.524 (2)
C1—C21.4316 (19)C9—S61.8232 (17)
C2—C31.355 (2)C9—H9A0.9700
C2—S11.7352 (15)C9—H9B0.9700
C3—C41.424 (2)C10—C111.464 (2)
C3—S21.7417 (14)C10—H10A0.9700
C4—N21.1404 (19)C10—H10B0.9700
C5—C61.3462 (19)C11—N31.136 (2)
C5—S21.7611 (15)C12—C131.520 (2)
C5—S11.7648 (14)C12—S51.8066 (17)
C6—S31.7527 (15)C12—H12A0.9700
C6—S41.7558 (14)C12—H12B0.9700
C7—C81.351 (2)C13—C141.465 (3)
C7—S61.7553 (14)C13—H13A0.9700
C7—S41.7628 (14)C13—H13B0.9700
C8—S51.7483 (14)C14—N41.136 (2)
C8—S31.7536 (14)
N1—C1—C2178.90 (18)C11—C10—C9111.21 (14)
C3—C2—C1122.75 (13)C11—C10—H10A109.4
C3—C2—S1118.32 (11)C9—C10—H10A109.4
C1—C2—S1118.92 (11)C11—C10—H10B109.4
C2—C3—C4123.46 (13)C9—C10—H10B109.4
C2—C3—S2117.65 (11)H10A—C10—H10B108.0
C4—C3—S2118.88 (10)N3—C11—C10177.38 (19)
N2—C4—C3178.71 (16)C13—C12—S5115.32 (11)
C6—C5—S2121.71 (11)C13—C12—H12A108.4
C6—C5—S1122.52 (11)S5—C12—H12A108.4
S2—C5—S1115.77 (8)C13—C12—H12B108.4
C5—C6—S3122.05 (11)S5—C12—H12B108.4
C5—C6—S4123.27 (11)H12A—C12—H12B107.5
S3—C6—S4114.67 (8)C14—C13—C12112.75 (15)
C8—C7—S6125.66 (11)C14—C13—H13A109.0
C8—C7—S4117.08 (10)C12—C13—H13A109.0
S6—C7—S4117.20 (8)C14—C13—H13B109.0
C7—C8—S5123.02 (11)C12—C13—H13B109.0
C7—C8—S3117.09 (10)H13A—C13—H13B107.8
S5—C8—S3119.69 (8)N4—C14—C13178.8 (2)
C10—C9—S6114.19 (10)C2—S1—C594.05 (7)
C10—C9—H9A108.7C3—S2—C594.21 (7)
S6—C9—H9A108.7C6—S3—C895.71 (7)
C10—C9—H9B108.7C6—S4—C795.29 (7)
S6—C9—H9B108.7C8—S5—C12102.98 (7)
H9A—C9—H9B107.6C7—S6—C9100.68 (7)
N1—C1—C2—C3−50 (9)C1—C2—S1—C5−178.05 (12)
N1—C1—C2—S1129 (9)C6—C5—S1—C2−179.46 (12)
C1—C2—C3—C4−1.2 (2)S2—C5—S1—C2−0.12 (8)
S1—C2—C3—C4−179.88 (11)C2—C3—S2—C50.78 (12)
C1—C2—C3—S2177.64 (11)C4—C3—S2—C5179.67 (11)
S1—C2—C3—S2−1.04 (16)C6—C5—S2—C3179.05 (12)
C2—C3—C4—N2−168 (8)S1—C5—S2—C3−0.29 (9)
S2—C3—C4—N214 (8)C5—C6—S3—C8178.64 (12)
S2—C5—C6—S3177.67 (7)S4—C6—S3—C8−2.39 (9)
S1—C5—C6—S3−3.04 (18)C7—C8—S3—C6−0.40 (12)
S2—C5—C6—S4−1.21 (18)S5—C8—S3—C6174.61 (8)
S1—C5—C6—S4178.08 (7)C5—C6—S4—C7−177.40 (12)
S6—C7—C8—S55.36 (19)S3—C6—S4—C73.65 (9)
S4—C7—C8—S5−171.73 (7)C8—C7—S4—C6−4.05 (12)
S6—C7—C8—S3−179.81 (8)S6—C7—S4—C6178.61 (8)
S4—C7—C8—S33.10 (16)C7—C8—S5—C12−162.25 (12)
S6—C9—C10—C11−62.05 (14)S3—C8—S5—C1223.05 (10)
C9—C10—C11—N3−17 (4)C13—C12—S5—C873.13 (13)
S5—C12—C13—C1459.88 (18)C8—C7—S6—C993.08 (14)
C12—C13—C14—N4−35 (11)S4—C7—S6—C9−89.84 (9)
C3—C2—S1—C50.68 (12)C10—C9—S6—C7−72.76 (12)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2799).

References

  • Batail, P. (2004). Chem. Rev.104, 4887–5782.
  • Chen, T., Wang, C. L., Qiu, H., Jin, L. Y. & Yin, B. Z. (2005). Heterocycles, 65, 187–193.
  • Fabre, J. M. (2000). J. Phys. IV, 10, 3–19.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hou, R.-B., Li, B., Chen, T., Yin, B.-Z. & Wu, L.-X. (2010). Acta Cryst. E66, o1379. [PMC free article] [PubMed]
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography