PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m1028–m1029.
Published online 2010 July 31. doi:  10.1107/S1600536810029740
PMCID: PMC3007502

(N-Benzoyl-N′-phenyl­thio­urea-κS)chlorido(η4-1,5-cyclo­octa­diene)rhodium(I)

Abstract

The title compound, [RhCl(C8H12)(C14H12N2OS)], is a rhodium(I) derivative with a functionalized thio­urea ligand. Despite the presence of several heteroatoms, the thio­urea ligand coordinates only in a monodentate fashion via the S atom. The geometry of the coordination sphere is approximately square planar about the RhI atom, with two bonds to the π-electrons of the 1,5-cyclo­octa­diene ligand, one bond to the Cl ligand and one bond to the S atom of the thio­urea ligand. The mol­ecular structure is stabilized by intra­molecular N—H(...)O and N—H(...)Cl hydrogen bonding. Inter­molecular N—H(...)O hydrogen-bonding inter­actions lead to the formation of layers extending parallel to (011).

Related literature

For related Rh(I) complexes containing thio­urea ligands, see: Cauzzi et al. (1995 [triangle]); Kemp et al. (1996 [triangle], 1997 [triangle]); Roodt et al. (1994 [triangle]). For related Rh(I) complexes containing other or similar β-diketones and π-bonding ligands, see: Bahl et al. (2000 [triangle]); Brink et al. (2007a [triangle],b [triangle]); Leipoldt et al. (1977 [triangle], 1980 [triangle]); Roodt et al. (2003 [triangle]); Steyl et al. (2004 [triangle]). For structural data for the thio­urea ligand N-phenyl-N′-benzoyl­thio­urea, see: Yamin & Yusof (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1028-scheme1.jpg

Experimental

Crystal data

  • [RhCl(C8H12)(C14H12N2OS)]
  • M r = 502.85
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1028-efi1.jpg
  • a = 6.6703 (2) Å
  • b = 10.1665 (4) Å
  • c = 14.9616 (5) Å
  • α = 96.891 (2)°
  • β = 91.588 (2)°
  • γ = 90.616 (2)°
  • V = 1006.78 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.10 mm−1
  • T = 100 K
  • 0.18 × 0.17 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.827, T max = 0.917
  • 18721 measured reflections
  • 4980 independent reflections
  • 4476 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.103
  • S = 1.23
  • 4980 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.77 e Å−3
  • Δρmin = −0.66 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810029740/wm2369sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029740/wm2369Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Gratitude is due to the University of Free State, NRF, as well as THRIP for their financial assistance. Part of this material is based on work supported by Sasol via bursary funds.

supplementary crystallographic information

Comment

Rhodium complexes containing σ-bonding bidentate ligands such as β-diketones and π-bonding ligands such as arenes, carbonyls etc. simultaneously, are a well known compounds. For a few examples, see: Bahl et al. (2000), Brink et al. (2007a,b), Cauzzi et al. (1995), Leipoldt et al. (1977, 1980), Roodt et al. (2003), Steyl et al. (2004).

The title compound, [Rh(C8H12)(C14H12N2OS)Cl], features a functionalized thiourea ligand, which has been shown by previous authors (Kemp et al., 1996, 1997; Roodt et al., 1994)) to have the ability to co-ordinate in a bidentate fashion as many other hetero-atom bidentate ligands do, including β-diketones and derivatives. However, in the title compound this ligand only co-ordinates in a monodentate fashion via the sulfur atom to the rhodium atom.

The rhodium(I) complex is found to have a slightly distorted square-planar coordination about the rhodium centre with a chlorine atom cis to the sulfur atom (Fig. 1). The packing of the complex is well established by the presence of intra- and intermolecular hydrogen bonding. Intramolecular hydrogen bonding occurs between O1 and N2 with a distance of 1.99 Å. The same observation was made with the free ligand (Yamin & Yusof, 2003). This interaction suggests the prefered orientation of the free ligand to have its oxygen trans to the sulfur atom and it clearly translates to the orientation found in the title compound. Hydrogen bonding was also observed between the nitrogen atom N1 and the chlorine atom Cl1, with a distance of 2.47 Å, which added onto the effect of stabilizing the orientation found in the title compound. Since two molecules are orientated about an inversion centre, the oxygen atom O1 as well as the nitrogen atom N2 were found in close approximation to the oxygen atom in the next molecule. As a result, intermolecular hydrogen bonding between the two oxygen atoms as well as between N2 and O1 were established with distances of 2.980 Å and 3.053 Å, respectively. The intermolecular hydrogen bonding leads to a layered assembly of the molecules, extending approximately parallel to (011).

In addition, a vast variety of short contacts via van der Waals interactions are found to be present amongst various atoms. These short contacts are suspected to be the cause of the distortion found in the cyclo-octadiene ring as six of its atoms are pulled in various directions.

Experimental

Dichloridodicyclo-octadienedirhodium(I) (20.0 mg, 0.0406 mmol) was allowed to react with N-phenyl-N'-benzoylthiourea (20.8 mg, 0.0406 mmol) in acetone (2 cm3). Upon evaporation yellow crystals were obtained.

Refinement

The aliphatic as well as aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The highest residual electron density was located 0.79 Å from C15 and the deepest hole was 0.88 Å from Rh1.

Figures

Fig. 1.
: A representation of the title compound, displaying the numbering scheme and displacement ellipsoids at the 50% probability level.

Crystal data

[RhCl(C8H12)(C14H12N2OS)]Z = 2
Mr = 502.85F(000) = 512
Triclinic, P1Dx = 1.659 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6703 (2) ÅCell parameters from 8458 reflections
b = 10.1665 (4) Åθ = 3.1–28.3°
c = 14.9616 (5) ŵ = 1.10 mm1
α = 96.891 (2)°T = 100 K
β = 91.588 (2)°Platelet, yellow
γ = 90.616 (2)°0.18 × 0.17 × 0.08 mm
V = 1006.78 (6) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer4980 independent reflections
Radiation source: fine-focus sealed tube4476 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi]– and ω–scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −8→8
Tmin = 0.827, Tmax = 0.917k = −13→13
18721 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.23w = 1/[σ2(Fo2) + (0.0511P)2 + 0.7134P] where P = (Fo2 + 2Fc2)/3
4980 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = −0.66 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Rh10.63173 (3)0.78913 (2)0.637367 (14)0.01158 (9)
Cl10.56345 (11)0.95960 (7)0.75606 (5)0.01837 (16)
S10.42173 (10)0.62944 (7)0.69410 (5)0.01483 (15)
O10.6682 (3)0.5834 (2)0.97351 (14)0.0187 (4)
N20.3860 (3)0.5223 (2)0.84601 (16)0.0155 (5)
H20.42370.51720.90230.019*
N10.6287 (3)0.6887 (2)0.84822 (16)0.0147 (5)
H10.66580.75980.82430.018*
C90.2314 (4)0.4322 (3)0.80693 (18)0.0135 (5)
C80.4760 (4)0.6125 (3)0.80349 (19)0.0134 (5)
C100.0498 (4)0.4796 (3)0.77768 (19)0.0148 (5)
H100.02890.57220.78020.018*
C61.0460 (4)0.6965 (3)1.0142 (2)0.0201 (6)
H61.00270.62601.04570.024*
C12−0.0712 (4)0.2545 (3)0.7407 (2)0.0195 (6)
H12−0.17540.19380.71860.023*
C10.9224 (4)0.7406 (3)0.94780 (19)0.0142 (5)
C70.7298 (4)0.6651 (3)0.92667 (19)0.0139 (5)
C31.1740 (5)0.9028 (3)0.9235 (2)0.0290 (8)
H31.21820.97370.89260.035*
C11−0.1017 (4)0.3899 (3)0.7445 (2)0.0173 (6)
H11−0.22650.42170.72440.021*
C20.9856 (5)0.8446 (3)0.9022 (2)0.0235 (7)
H2A0.90140.87560.85720.028*
C140.2642 (4)0.2972 (3)0.80220 (19)0.0171 (6)
H140.39000.26570.82140.021*
C130.1126 (4)0.2078 (3)0.7693 (2)0.0183 (6)
H130.13430.11520.76640.022*
C190.8922 (4)0.8992 (3)0.6073 (2)0.0167 (6)
H190.92990.97400.65470.020*
C160.5920 (5)0.7470 (3)0.4355 (2)0.0183 (6)
H16A0.45130.77290.42550.022*
H16B0.63410.69130.38060.022*
C51.2327 (5)0.7560 (3)1.0342 (2)0.0233 (7)
H51.31720.72591.07950.028*
C41.2967 (5)0.8581 (3)0.9890 (2)0.0251 (7)
H41.42510.89781.00290.030*
C201.0617 (4)0.8056 (3)0.5829 (2)0.0225 (7)
H20A1.13590.78930.63860.027*
H20B1.15590.84810.54480.027*
C210.9898 (4)0.6720 (3)0.5324 (2)0.0196 (6)
H21A0.98980.67740.46680.023*
H21B1.08470.60220.54560.023*
C220.7794 (4)0.6336 (3)0.5590 (2)0.0153 (6)
H220.77190.54650.58340.018*
C180.7382 (4)0.9284 (3)0.54959 (19)0.0147 (5)
H180.68441.01990.56280.018*
C150.6023 (4)0.6668 (3)0.51368 (19)0.0150 (6)
H150.49310.59830.51210.018*
C170.7254 (4)0.8724 (3)0.4506 (2)0.0180 (6)
H17A0.86170.85090.42940.022*
H17B0.66980.94020.41490.022*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Rh10.01211 (12)0.01013 (13)0.01270 (13)−0.00102 (8)0.00040 (8)0.00221 (9)
Cl10.0245 (3)0.0138 (3)0.0166 (3)0.0010 (3)0.0037 (3)0.0002 (3)
S10.0163 (3)0.0168 (3)0.0120 (3)−0.0051 (3)−0.0012 (2)0.0050 (3)
O10.0183 (10)0.0233 (11)0.0155 (10)−0.0071 (8)−0.0018 (8)0.0075 (9)
N20.0171 (11)0.0185 (12)0.0114 (11)−0.0064 (9)−0.0025 (9)0.0045 (10)
N10.0167 (11)0.0141 (12)0.0136 (12)−0.0049 (9)−0.0015 (9)0.0044 (9)
C90.0151 (12)0.0139 (13)0.0113 (13)−0.0044 (10)0.0008 (10)0.0015 (10)
C80.0132 (12)0.0139 (13)0.0127 (13)0.0002 (10)0.0008 (10)0.0005 (10)
C100.0177 (13)0.0135 (13)0.0139 (14)−0.0007 (10)0.0045 (10)0.0031 (11)
C60.0179 (13)0.0270 (16)0.0168 (15)−0.0051 (12)0.0011 (11)0.0086 (12)
C120.0219 (14)0.0180 (15)0.0181 (15)−0.0077 (11)−0.0011 (11)0.0013 (12)
C10.0131 (12)0.0149 (14)0.0141 (13)−0.0023 (10)0.0012 (10)0.0001 (11)
C70.0132 (12)0.0152 (14)0.0130 (13)−0.0011 (10)0.0006 (10)0.0009 (11)
C30.0285 (17)0.0246 (17)0.035 (2)−0.0126 (14)−0.0060 (14)0.0125 (15)
C110.0144 (12)0.0212 (15)0.0167 (14)−0.0019 (11)−0.0028 (11)0.0041 (12)
C20.0230 (15)0.0233 (16)0.0249 (17)−0.0072 (12)−0.0068 (12)0.0085 (13)
C140.0191 (13)0.0188 (15)0.0135 (14)−0.0010 (11)−0.0029 (11)0.0034 (11)
C130.0236 (14)0.0141 (14)0.0172 (14)−0.0024 (11)−0.0044 (11)0.0036 (11)
C190.0140 (12)0.0126 (13)0.0238 (15)−0.0043 (10)0.0036 (11)0.0023 (11)
C160.0250 (14)0.0167 (14)0.0132 (14)−0.0025 (11)0.0014 (11)0.0024 (11)
C50.0186 (14)0.0278 (17)0.0243 (16)−0.0010 (12)−0.0049 (12)0.0080 (13)
C40.0171 (14)0.0284 (18)0.0291 (18)−0.0070 (12)−0.0017 (12)0.0023 (14)
C200.0120 (13)0.0177 (15)0.0373 (19)−0.0008 (11)0.0024 (12)0.0008 (13)
C210.0142 (13)0.0163 (15)0.0281 (17)0.0030 (11)0.0040 (11)0.0014 (12)
C220.0178 (13)0.0090 (13)0.0186 (14)−0.0003 (10)0.0037 (11)−0.0005 (11)
C180.0178 (12)0.0088 (12)0.0180 (14)−0.0039 (10)0.0025 (11)0.0041 (11)
C150.0185 (13)0.0116 (13)0.0144 (14)−0.0039 (10)0.0010 (10)−0.0006 (11)
C170.0212 (14)0.0145 (14)0.0196 (15)−0.0020 (11)0.0041 (11)0.0061 (12)

Geometric parameters (Å, °)

Rh1—C152.105 (3)C11—H110.9500
Rh1—C222.121 (3)C2—H2A0.9500
Rh1—C192.144 (3)C14—C131.391 (4)
Rh1—C182.170 (3)C14—H140.9500
Rh1—S12.3803 (7)C13—H130.9500
Rh1—Cl12.3850 (7)C19—C181.382 (4)
S1—C81.696 (3)C19—C201.510 (4)
O1—C71.224 (3)C19—H191.0000
N2—C81.325 (4)C16—C151.504 (4)
N2—C91.436 (3)C16—C171.538 (4)
N2—H20.8800C16—H16A0.9900
N1—C81.381 (3)C16—H16B0.9900
N1—C71.385 (4)C5—C41.375 (5)
N1—H10.8800C5—H50.9500
C9—C141.386 (4)C4—H40.9500
C9—C101.388 (4)C20—C211.537 (4)
C10—C111.393 (4)C20—H20A0.9900
C10—H100.9500C20—H20B0.9900
C6—C51.388 (4)C21—C221.528 (4)
C6—C11.392 (4)C21—H21A0.9900
C6—H60.9500C21—H21B0.9900
C12—C111.388 (4)C22—C151.410 (4)
C12—C131.394 (4)C22—H221.0000
C12—H120.9500C18—C171.521 (4)
C1—C21.393 (4)C18—H181.0000
C1—C71.496 (4)C15—H151.0000
C3—C41.382 (5)C17—H17A0.9900
C3—C21.395 (4)C17—H17B0.9900
C3—H30.9500
C15—Rh1—C2238.97 (11)C14—C13—H13120.1
C15—Rh1—C1997.74 (11)C12—C13—H13120.1
C22—Rh1—C1982.06 (11)C18—C19—C20125.5 (3)
C15—Rh1—C1881.32 (11)C18—C19—Rh172.36 (16)
C22—Rh1—C1889.91 (11)C20—C19—Rh1109.79 (19)
C19—Rh1—C1837.35 (11)C18—C19—H19113.8
C15—Rh1—S185.42 (8)C20—C19—H19113.8
C22—Rh1—S189.46 (8)Rh1—C19—H19113.8
C19—Rh1—S1161.71 (9)C15—C16—C17112.8 (2)
C18—Rh1—S1159.60 (8)C15—C16—H16A109.0
C15—Rh1—Cl1160.03 (8)C17—C16—H16A109.0
C22—Rh1—Cl1160.91 (8)C15—C16—H16B109.0
C19—Rh1—Cl189.02 (8)C17—C16—H16B109.0
C18—Rh1—Cl193.19 (8)H16A—C16—H16B107.8
S1—Rh1—Cl194.05 (2)C4—C5—C6120.6 (3)
C8—S1—Rh1112.67 (10)C4—C5—H5119.7
C8—N2—C9124.8 (2)C6—C5—H5119.7
C8—N2—H2117.6C5—C4—C3119.9 (3)
C9—N2—H2117.6C5—C4—H4120.0
C8—N1—C7126.9 (2)C3—C4—H4120.0
C8—N1—H1116.5C19—C20—C21113.1 (2)
C7—N1—H1116.5C19—C20—H20A109.0
C14—C9—C10120.7 (3)C21—C20—H20A109.0
C14—C9—N2118.8 (3)C19—C20—H20B109.0
C10—C9—N2120.5 (3)C21—C20—H20B109.0
N2—C8—N1118.5 (3)H20A—C20—H20B107.8
N2—C8—S1122.2 (2)C22—C21—C20112.1 (2)
N1—C8—S1119.1 (2)C22—C21—H21A109.2
C9—C10—C11119.3 (3)C20—C21—H21A109.2
C9—C10—H10120.3C22—C21—H21B109.2
C11—C10—H10120.3C20—C21—H21B109.2
C5—C6—C1119.6 (3)H21A—C21—H21B107.9
C5—C6—H6120.2C15—C22—C21123.7 (3)
C1—C6—H6120.2C15—C22—Rh169.93 (16)
C11—C12—C13119.9 (3)C21—C22—Rh1113.40 (19)
C11—C12—H12120.1C15—C22—H22114.0
C13—C12—H12120.1C21—C22—H22114.0
C6—C1—C2120.0 (3)Rh1—C22—H22114.0
C6—C1—C7115.9 (3)C19—C18—C17122.9 (3)
C2—C1—C7123.9 (3)C19—C18—Rh170.29 (16)
O1—C7—N1121.6 (2)C17—C18—Rh1112.65 (18)
O1—C7—C1122.5 (3)C19—C18—H18114.4
N1—C7—C1115.9 (2)C17—C18—H18114.4
C4—C3—C2120.5 (3)Rh1—C18—H18114.4
C4—C3—H3119.7C22—C15—C16125.6 (2)
C2—C3—H3119.7C22—C15—Rh171.11 (16)
C12—C11—C10120.4 (3)C16—C15—Rh1111.48 (19)
C12—C11—H11119.8C22—C15—H15113.7
C10—C11—H11119.8C16—C15—H15113.7
C1—C2—C3119.2 (3)Rh1—C15—H15113.7
C1—C2—H2A120.4C18—C17—C16111.3 (2)
C3—C2—H2A120.4C18—C17—H17A109.4
C9—C14—C13119.8 (3)C16—C17—H17A109.4
C9—C14—H14120.1C18—C17—H17B109.4
C13—C14—H14120.1C16—C17—H17B109.4
C14—C13—C12119.9 (3)H17A—C17—H17B108.0
C15—Rh1—S1—C8147.13 (13)C18—C19—C20—C21−47.9 (4)
C22—Rh1—S1—C8108.32 (13)Rh1—C19—C20—C2134.1 (3)
C19—Rh1—S1—C846.3 (3)C19—C20—C21—C22−29.6 (4)
C18—Rh1—S1—C8−163.4 (2)C20—C21—C22—C1591.3 (4)
Cl1—Rh1—S1—C8−52.90 (11)C20—C21—C22—Rh110.6 (3)
C8—N2—C9—C14120.1 (3)C19—Rh1—C22—C15−112.87 (18)
C8—N2—C9—C10−62.3 (4)C18—Rh1—C22—C15−76.23 (17)
C9—N2—C8—N1−177.1 (2)S1—Rh1—C22—C1583.38 (15)
C9—N2—C8—S1−1.8 (4)Cl1—Rh1—C22—C15−175.75 (18)
C7—N1—C8—N214.4 (4)C15—Rh1—C22—C21119.1 (3)
C7—N1—C8—S1−161.1 (2)C19—Rh1—C22—C216.2 (2)
Rh1—S1—C8—N2−175.2 (2)C18—Rh1—C22—C2142.8 (2)
Rh1—S1—C8—N10.1 (2)S1—Rh1—C22—C21−157.6 (2)
C14—C9—C10—C111.0 (4)Cl1—Rh1—C22—C21−56.7 (4)
N2—C9—C10—C11−176.5 (3)C20—C19—C18—C17−2.7 (4)
C5—C6—C1—C2−0.5 (5)Rh1—C19—C18—C17−104.8 (2)
C5—C6—C1—C7176.2 (3)C20—C19—C18—Rh1102.1 (3)
C8—N1—C7—O1−12.9 (4)C15—Rh1—C18—C19−115.12 (18)
C8—N1—C7—C1164.3 (3)C22—Rh1—C18—C19−76.96 (18)
C6—C1—C7—O111.1 (4)S1—Rh1—C18—C19−165.15 (18)
C2—C1—C7—O1−172.3 (3)Cl1—Rh1—C18—C1984.20 (16)
C6—C1—C7—N1−166.1 (3)C15—Rh1—C18—C173.3 (2)
C2—C1—C7—N110.5 (4)C22—Rh1—C18—C1741.4 (2)
C13—C12—C11—C10−0.7 (4)C19—Rh1—C18—C17118.4 (3)
C9—C10—C11—C12−0.1 (4)S1—Rh1—C18—C17−46.8 (3)
C6—C1—C2—C30.5 (5)Cl1—Rh1—C18—C17−157.41 (19)
C7—C1—C2—C3−175.9 (3)C21—C22—C15—C16−2.0 (4)
C4—C3—C2—C1−0.1 (5)Rh1—C22—C15—C16103.4 (3)
C10—C9—C14—C13−1.1 (4)C21—C22—C15—Rh1−105.3 (3)
N2—C9—C14—C13176.4 (3)C17—C16—C15—C22−46.0 (4)
C9—C14—C13—C120.4 (4)C17—C16—C15—Rh135.6 (3)
C11—C12—C13—C140.5 (4)C19—Rh1—C15—C2267.06 (18)
C15—Rh1—C19—C1864.59 (18)C18—Rh1—C15—C22100.73 (17)
C22—Rh1—C19—C18100.38 (18)S1—Rh1—C15—C22−94.81 (15)
S1—Rh1—C19—C18163.5 (2)Cl1—Rh1—C15—C22175.93 (17)
Cl1—Rh1—C19—C18−96.55 (16)C22—Rh1—C15—C16−121.7 (3)
C15—Rh1—C19—C20−57.6 (2)C19—Rh1—C15—C16−54.7 (2)
C22—Rh1—C19—C20−21.8 (2)C18—Rh1—C15—C16−21.0 (2)
C18—Rh1—C19—C20−122.2 (3)S1—Rh1—C15—C16143.47 (19)
S1—Rh1—C19—C2041.2 (4)Cl1—Rh1—C15—C1654.2 (3)
Cl1—Rh1—C19—C20141.2 (2)C19—C18—C17—C1695.1 (3)
C1—C6—C5—C40.0 (5)Rh1—C18—C17—C1614.6 (3)
C6—C5—C4—C30.4 (5)C15—C16—C17—C18−32.7 (3)
C2—C3—C4—C5−0.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O10.881.992.657 (3)132
N2—H2···O1i0.882.323.053 (3)141
N1—H1···Cl10.882.473.253 (3)148

Symmetry codes: (i) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2369).

References

  • Bahl, M., Hakansson, M., Mahmoudkhani, A. H. & Ohrstrom, L. (2000). Organometallics, 19, 5589–5596.
  • Brink, A., Roodt, A. & Visser, H. G. (2007a). Acta Cryst. E63, m48–m50.
  • Brink, A., Roodt, A. & Visser, H. G. (2007b). Acta Cryst. E63, m2831–m2832.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cauzzi, D., Lanfranchi, M., Marzolini, G., Predieri, G., Tiripicchio, A., Costa, M. & Zanoni, R. (1995). J. Organomet. Chem.488, 115–125.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kemp, G., Roodt, A., Purcell, W. & Koch, K. R. (1996). Rhodium Express, 16, 17–22.
  • Kemp, G., Roodt, A., Purcell, W. & Koch, K. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4481–4483.
  • Leipoldt, J. G., Basson, S. S., Lamprecht, G. J., Bok, L. D. C. & Schlebusch, J. J. J. (1980). Inorg. Chim. Acta, 40, 43–46.
  • Leipoldt, J. G., Bok, L. D. C., Basson, S. S., van Vollenhoven, J. S. & Gerber, T. I. A. (1977). Inorg. Chim. Acta, 25, L63–L64.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Roodt, A., Leipoldt, J. G., Koch, K. R. & Matoetoe, M. (1994). Rhodium Express, 7–8, 39–42.
  • Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev.245, 121–137.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steyl, G., Kruger, G. J. & Roodt, A. (2004). Acta Cryst. C60, m473–m475. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  • Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography