PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2048.
Published online 2010 July 17. doi:  10.1107/S1600536810027698
PMCID: PMC3007500

N-[4-(Benzyl­sulfamo­yl)phen­yl]acetamide

Abstract

A folded conformation is found for the title compound, C15H16N2O3S, whereby the benzene rings come into close proximity [centroid–centroid distance = 4.0357 (12) Å and the dihedral angle between them = 24.37 (10)°]. The amide group is coplanar with the benzene ring to which it is bound [C—C—N—C torsion angle = 11.1 (3)°]. In the crystal packing, two-dimensional arrays in the (101) plane are formed via N—H(...)O hydrogen bonding.

Related literature

For background to the pharmacological uses of sulfonamides, see: Beate et al. (1998 [triangle]); Kazmierski et al. (2004 [triangle]). For related structures, see: Khan et al. (2010 [triangle]); Sharif et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2048-scheme1.jpg

Experimental

Crystal data

  • C15H16N2O3S
  • M r = 304.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2048-efi1.jpg
  • a = 9.0646 (9) Å
  • b = 13.6888 (14) Å
  • c = 12.1651 (12) Å
  • β = 98.635 (5)°
  • V = 1492.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 293 K
  • 0.19 × 0.09 × 0.07 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.868, T max = 0.948
  • 13777 measured reflections
  • 3577 independent reflections
  • 2689 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.124
  • S = 1.02
  • 3577 reflections
  • 197 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027698/jj2043sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027698/jj2043Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Mr Munawar Hussain, Engineering Cell GC University, Lahore, for providing support services to the Materials Chemistry Laboratory.

supplementary crystallographic information

Comment

Sulfonamide drugs are used, for example, as inhibitors of HIV infection (Kazmierski et al., 2004) and as anti-hypertensive drugs (Beate et al., 1998). In connection with on-going structural studies of sulfonamides (Khan et al., 2010; Sharif et al., 2010), the crystal and molecular structure of the title compound, C15H16N2O3S, was investigated.

The molecule of C15H16N2O3S has a folded conformation with the benzene ring of the benzyl group somewhat orientated over the S-bound benzene ring. The rings are approximately parallel, forming a dihedral angle of 24.37 (10) °; the distance between the ring centroids is 4.0357 (12) Å. The amide group is essentially co-planar with the ring to which it is bound as seen in the C10–C11–N2–C14 torsion angle of 11.1 (3) °.

The crystal packing is dominated by N–H···O hydrogen bonds whereby the N1–H atom forms a hydrogen bond to the amide-carbonyl, and the amide N2–H forms a contact with the S-bound O2 atom, Table 1. The former leads to centrosymmetric aggregates and these are connected by the latter into a 2-D array in the (1 0 1) plane, Fig. 2.

Experimental

To 4-acetamidobenzenesulfonyl chloride (498 mg, 2.14 mmol) in distilled water (10 ml) was added benzylamine (234 ml, 2.14 mmol), the reaction mixture was stirred at room temperature while maintaining the pH of the reaction mixture at 8 using 3% sodium carbonate. The progress of the reaction was monitored by TLC. After consumption of all the reactants, the precipitates were filtered, dried and crystallized from methanol to yield colourless crystals.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atom was refined with the distance restraint N–H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of C15H16N2O3S showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
Fig. 2.
A view of the supramolecular 2-D array in the (1 0 1) plane mediated by N–H···O hydrogen bonding (orange dashed lines) in C15H16N2O3S. Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.

Crystal data

C15H16N2O3SF(000) = 640
Mr = 304.37Dx = 1.355 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4154 reflections
a = 9.0646 (9) Åθ = 2.6–27.9°
b = 13.6888 (14) ŵ = 0.23 mm1
c = 12.1651 (12) ÅT = 293 K
β = 98.635 (5)°Prism, colourless
V = 1492.4 (3) Å30.19 × 0.09 × 0.07 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer3577 independent reflections
Radiation source: fine-focus sealed tube2689 reflections with I > 2σ(I)
graphiteRint = 0.036
[var phi] and ω scansθmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.868, Tmax = 0.948k = −18→17
13777 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0643P)2 + 0.3076P] where P = (Fo2 + 2Fc2)/3
3577 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.25 e Å3
2 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.11090 (5)0.33181 (3)0.82483 (3)0.03999 (15)
O10.21873 (16)0.27094 (10)0.88809 (10)0.0536 (4)
O2−0.04454 (15)0.31532 (11)0.82667 (12)0.0594 (4)
O30.02478 (16)0.40834 (11)0.26180 (11)0.0596 (4)
N10.14186 (17)0.44201 (11)0.86867 (12)0.0448 (4)
H1N0.0786 (18)0.4846 (12)0.8311 (15)0.054*
N20.20419 (16)0.31175 (10)0.35277 (11)0.0399 (3)
H2N0.2876 (15)0.2778 (12)0.3473 (16)0.048*
C10.2944 (2)0.47687 (16)0.90443 (16)0.0559 (5)
H1A0.34090.43470.96380.067*
H1B0.28880.54180.93550.067*
C20.3944 (2)0.48133 (13)0.81674 (15)0.0464 (4)
C30.3606 (2)0.54229 (14)0.72574 (17)0.0532 (5)
H30.27480.58050.71840.064*
C40.4533 (3)0.54678 (16)0.6461 (2)0.0661 (6)
H40.42950.58800.58520.079*
C50.5799 (3)0.49141 (18)0.6555 (2)0.0732 (7)
H50.64160.49450.60110.088*
C60.6154 (3)0.43158 (18)0.7452 (2)0.0745 (7)
H60.70210.39430.75230.089*
C70.5230 (2)0.42612 (15)0.8254 (2)0.0611 (6)
H70.54770.38480.88600.073*
C80.13636 (18)0.32476 (11)0.68406 (13)0.0354 (3)
C90.0308 (2)0.36444 (16)0.60359 (15)0.0499 (5)
H9−0.05390.39340.62380.060*
C100.0494 (2)0.36167 (15)0.49303 (15)0.0496 (5)
H10−0.02230.38880.43900.059*
C110.17580 (18)0.31823 (11)0.46307 (13)0.0343 (3)
C120.2803 (2)0.27757 (14)0.54465 (14)0.0436 (4)
H120.36470.24770.52500.052*
C130.26102 (19)0.28078 (13)0.65483 (14)0.0426 (4)
H130.33210.25330.70910.051*
C140.1335 (2)0.35627 (13)0.26110 (14)0.0418 (4)
C150.1978 (3)0.33645 (17)0.15660 (16)0.0605 (6)
H15A0.16350.27410.12700.091*
H15B0.30480.33600.17300.091*
H15C0.16640.38650.10290.091*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0444 (3)0.0476 (3)0.0295 (2)−0.00397 (18)0.01067 (17)0.00348 (17)
O10.0718 (10)0.0527 (7)0.0358 (6)0.0085 (6)0.0066 (6)0.0080 (6)
O20.0492 (8)0.0830 (10)0.0502 (8)−0.0168 (7)0.0209 (6)0.0030 (7)
O30.0599 (9)0.0774 (10)0.0420 (7)0.0218 (7)0.0096 (6)0.0121 (7)
N10.0510 (9)0.0497 (9)0.0341 (7)0.0033 (7)0.0079 (6)−0.0005 (6)
N20.0407 (8)0.0491 (8)0.0312 (7)0.0066 (6)0.0094 (6)−0.0011 (6)
C10.0667 (13)0.0620 (12)0.0363 (9)−0.0135 (10)−0.0015 (9)−0.0055 (9)
C20.0470 (10)0.0429 (9)0.0467 (10)−0.0085 (8)−0.0014 (8)−0.0028 (8)
C30.0547 (12)0.0492 (10)0.0555 (11)0.0010 (8)0.0081 (9)0.0034 (9)
C40.0772 (16)0.0596 (13)0.0634 (14)−0.0104 (11)0.0167 (12)0.0071 (11)
C50.0672 (15)0.0670 (14)0.0917 (18)−0.0175 (12)0.0319 (14)−0.0142 (13)
C60.0467 (13)0.0666 (14)0.109 (2)−0.0009 (10)0.0096 (13)−0.0133 (14)
C70.0554 (13)0.0516 (11)0.0706 (14)−0.0016 (9)−0.0091 (11)0.0039 (10)
C80.0362 (9)0.0418 (8)0.0290 (7)−0.0043 (6)0.0079 (6)0.0004 (6)
C90.0395 (10)0.0759 (13)0.0357 (9)0.0162 (9)0.0105 (7)0.0016 (9)
C100.0420 (10)0.0736 (12)0.0329 (9)0.0161 (9)0.0050 (7)0.0031 (9)
C110.0351 (8)0.0379 (8)0.0305 (7)−0.0024 (6)0.0074 (6)−0.0015 (6)
C120.0397 (9)0.0541 (10)0.0383 (9)0.0122 (8)0.0098 (7)0.0001 (8)
C130.0408 (10)0.0523 (10)0.0341 (8)0.0080 (8)0.0038 (7)0.0044 (7)
C140.0461 (10)0.0468 (9)0.0327 (8)−0.0030 (8)0.0063 (7)−0.0006 (7)
C150.0711 (14)0.0797 (15)0.0328 (9)0.0057 (11)0.0145 (9)0.0024 (9)

Geometric parameters (Å, °)

S1—O11.4199 (13)C5—C61.363 (4)
S1—O21.4304 (14)C5—H50.9300
S1—N11.6105 (16)C6—C71.380 (3)
S1—C81.7647 (16)C6—H60.9300
O3—C141.217 (2)C7—H70.9300
N1—C11.466 (2)C8—C91.374 (2)
N1—H1N0.893 (9)C8—C131.373 (2)
N2—C141.346 (2)C9—C101.381 (2)
N2—C111.4064 (19)C9—H90.9300
N2—H2N0.899 (9)C10—C111.387 (2)
C1—C21.501 (3)C10—H100.9300
C1—H1A0.9700C11—C121.382 (2)
C1—H1B0.9700C12—C131.378 (2)
C2—C71.380 (3)C12—H120.9300
C2—C31.383 (3)C13—H130.9300
C3—C41.376 (3)C14—C151.501 (2)
C3—H30.9300C15—H15A0.9600
C4—C51.366 (3)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
O1—S1—O2119.90 (9)C7—C6—H6119.9
O1—S1—N1107.38 (8)C2—C7—C6120.8 (2)
O2—S1—N1105.41 (9)C2—C7—H7119.6
O1—S1—C8108.31 (8)C6—C7—H7119.6
O2—S1—C8106.21 (8)C9—C8—C13120.05 (15)
N1—S1—C8109.33 (8)C9—C8—S1119.43 (13)
C1—N1—S1120.86 (14)C13—C8—S1120.52 (13)
C1—N1—H1N116.3 (13)C8—C9—C10120.62 (16)
S1—N1—H1N112.0 (13)C8—C9—H9119.7
C14—N2—C11129.01 (14)C10—C9—H9119.7
C14—N2—H2N118.3 (13)C9—C10—C11119.62 (16)
C11—N2—H2N112.4 (13)C9—C10—H10120.2
N1—C1—C2116.46 (15)C11—C10—H10120.2
N1—C1—H1A108.2C12—C11—C10119.21 (15)
C2—C1—H1A108.2C12—C11—N2117.12 (14)
N1—C1—H1B108.2C10—C11—N2123.66 (15)
C2—C1—H1B108.2C13—C12—C11120.82 (15)
H1A—C1—H1B107.3C13—C12—H12119.6
C7—C2—C3118.3 (2)C11—C12—H12119.6
C7—C2—C1121.10 (19)C8—C13—C12119.68 (16)
C3—C2—C1120.57 (18)C8—C13—H13120.2
C4—C3—C2120.4 (2)C12—C13—H13120.2
C4—C3—H3119.8O3—C14—N2123.00 (16)
C2—C3—H3119.8O3—C14—C15121.99 (17)
C5—C4—C3120.7 (2)N2—C14—C15115.01 (16)
C5—C4—H4119.7C14—C15—H15A109.5
C3—C4—H4119.7C14—C15—H15B109.5
C6—C5—C4119.7 (2)H15A—C15—H15B109.5
C6—C5—H5120.2C14—C15—H15C109.5
C4—C5—H5120.2H15A—C15—H15C109.5
C5—C6—C7120.2 (2)H15B—C15—H15C109.5
C5—C6—H6119.9
O1—S1—N1—C135.74 (15)O1—S1—C8—C13−11.08 (17)
O2—S1—N1—C1164.65 (14)O2—S1—C8—C13−141.10 (15)
C8—S1—N1—C1−81.56 (15)N1—S1—C8—C13105.63 (15)
S1—N1—C1—C264.4 (2)C13—C8—C9—C10−0.8 (3)
N1—C1—C2—C7−118.2 (2)S1—C8—C9—C10178.69 (16)
N1—C1—C2—C362.7 (2)C8—C9—C10—C110.1 (3)
C7—C2—C3—C40.4 (3)C9—C10—C11—C120.6 (3)
C1—C2—C3—C4179.41 (19)C9—C10—C11—N2179.85 (18)
C2—C3—C4—C5−0.1 (3)C14—N2—C11—C12−169.65 (17)
C3—C4—C5—C6−0.5 (4)C14—N2—C11—C1011.1 (3)
C4—C5—C6—C70.7 (4)C10—C11—C12—C13−0.8 (3)
C3—C2—C7—C6−0.1 (3)N2—C11—C12—C13179.98 (16)
C1—C2—C7—C6−179.14 (19)C9—C8—C13—C120.6 (3)
C5—C6—C7—C2−0.5 (3)S1—C8—C13—C12−178.81 (14)
O1—S1—C8—C9169.47 (15)C11—C12—C13—C80.1 (3)
O2—S1—C8—C939.45 (17)C11—N2—C14—O3−3.2 (3)
N1—S1—C8—C9−73.82 (16)C11—N2—C14—C15177.27 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···O3i0.894 (17)1.996 (17)2.877 (2)168.2 (16)
N2—H2n···O2ii0.898 (15)2.029 (15)2.921 (2)171.5 (16)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2043).

References

  • Beate, G., Nadenik, P. & Wagner, H. (1998). WO Patent No. 9855481.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kazmierski, W. M., Aquino, C. J., Bifulco, N., Boros, E. E., Chauder, B. A., Chong, P. Y., Duan, M., Deanda, F. Jr, Koble, C. S., Mclean, E. W., Peckham, J. P., Perkins, A. C., Thompson, J. B. & Vanderwall, D. (2004). WO Patent No. 2004054974.
  • Khan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088. [PMC free article] [PubMed]
  • Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography