PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m948.
Published online 2010 July 17. doi:  10.1107/S1600536810027510
PMCID: PMC3007487

(Quinoline-2-carboxyl­ato-κO)(quinoline-2-carb­oxy­lic acid-κO)bis­(quinoline-2-carb­oxy­lic acid-κ2 N,O)potassium

Abstract

The K atom in the title complex, [K(C10H6NO2)(C10H7NO2)3], lies on a twofold rotation axis that relates one N,O-chelating quinoline-2-carb­oxy­lic acid to the other; their N and O atoms are cis to each other in the distorted octa­hedral coordination geometry. The K atom is also coordinated by another monodentate quinoline-2-carb­oxy­lic acid; the acid is disordered with respect to a monodentate quinoline-2-carboxyl­ate anion; the acid and anion are linked by an O—H(...)O hydrogen bond. An O—H(...)N hydrogen bond links adjacent mol­ecules into a linear chain structure along the a axis.

Related literature

For the crystal structure of quinoline-2-carb­oxy­lic acid, see: Dobrzyńska & Jerzykiewicz (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m948-scheme1.jpg

Experimental

Crystal data

  • [K(C10H6NO2)(C10H7NO2)3]
  • M r = 730.76
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m948-efi1.jpg
  • a = 17.8679 (10) Å
  • b = 18.3617 (10) Å
  • c = 20.5162 (11) Å
  • V = 6731.1 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 100 K
  • 0.24 × 0.08 × 0.04 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.949, T max = 0.991
  • 40797 measured reflections
  • 3888 independent reflections
  • 3025 reflections with I > 2σ(I)
  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.102
  • S = 1.01
  • 3888 reflections
  • 248 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027510/jh2182sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027510/jh2182Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

I thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Quinoline-2-carboxylic acid exists as a 1:1 co-crystal of neutral quinoline-2-carboxylic acid and zwitterionic quinolinium-2-carboxylate, the two components being held together by O–H···O [2.566 (2) Å] and N–H···O [2.685 (2), 2.739 (2) Å] hydrogen bonds (Dobrzyńska & Jerzykiewicz, 2004). The potassium derivative formally exists as a co-crystal with three molecules of quinoline-2-carboxylic acid (Scheme I); however, the crystal structure is better interpreted in terms of the potassium atom being bis-N,O-chelated by two neutral acid molecules, and being coordinated by a third acid along with a carboxylate anion (Fig. 1); O–H···O and O–H···N hydrogen bonds link adjacent molecules into a linear chain structure.

The third acid and the carboxylate anion are disordered with respect to each other.

Experimental

Quinoline-2-carboxylic acid (1 mmol, 0.17 g) and methyl-8-hydroxy quinoline (1 mmol, 0.16 g) were dissolved completely in warm acetonitrile; the solution was filtered into a clean beaker for the growth of colorless crystals.

As no potasium salt was used in the attempted co-crystallization of the organic compounds, the potassium in the crystal structure is better attributed to the presence of potassium quinoline-2-carboxylate present in the commercially procured carboxylic acid reagent.

Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Of the two carboxylic acid hydrogen atoms, that connected to O2 lies on a general position and has full site-occupancy. That connected to O3 is near the Wyckoff 8c site so that the atom should have only half site-occupancy. The refinement of the two hydrogen atoms with a distance restraint of O–H 0.84±0.01 Å gave satisfactory temperature factors.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of a portion of the polymeric chain structure of K(C10H6NO2)(C10H7NO2)3 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code: i = x, 1 – y, 1/2 – z. ...

Crystal data

[K(C10H6NO2)(C10H7NO2)3]F(000) = 3024
Mr = 730.76Dx = 1.442 Mg m3
Orthorhombic, IbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2b 2cCell parameters from 8761 reflections
a = 17.8679 (10) Åθ = 2.2–27.4°
b = 18.3617 (10) ŵ = 0.22 mm1
c = 20.5162 (11) ÅT = 100 K
V = 6731.1 (6) Å3Prism, colorless
Z = 80.24 × 0.08 × 0.04 mm

Data collection

Bruker SMART APEX diffractometer3888 independent reflections
Radiation source: fine-focus sealed tube3025 reflections with I > 2σ(I)
graphiteRint = 0.075
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −23→23
Tmin = 0.949, Tmax = 0.991k = −23→23
40797 measured reflectionsl = −26→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0526P)2 + 5.6795P] where P = (Fo2 + 2Fc2)/3
3888 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = −0.54 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
K10.21891 (3)0.50000.25000.02083 (13)
O10.11657 (7)0.56758 (6)0.17738 (6)0.0256 (3)
O20.03124 (6)0.65608 (6)0.16390 (6)0.0232 (3)
O30.43403 (7)0.52894 (7)0.30384 (5)0.0257 (3)
O40.32794 (6)0.47403 (6)0.33533 (5)0.0245 (3)
N10.17250 (7)0.64593 (7)0.28227 (6)0.0183 (3)
N20.45505 (7)0.58087 (7)0.42560 (6)0.0171 (3)
C10.09152 (8)0.62730 (9)0.19030 (7)0.0190 (3)
C20.12794 (8)0.67785 (9)0.23938 (7)0.0175 (3)
C30.11455 (9)0.75361 (9)0.23657 (7)0.0193 (3)
H3A0.08040.77330.20570.023*
C40.15184 (8)0.79806 (9)0.27927 (7)0.0195 (3)
H40.14600.84940.27690.023*
C50.19914 (8)0.76670 (8)0.32701 (7)0.0179 (3)
C60.23871 (9)0.80868 (9)0.37409 (8)0.0210 (3)
H60.23480.86030.37380.025*
C70.28244 (9)0.77496 (9)0.41982 (8)0.0236 (4)
H70.30860.80340.45110.028*
C80.28908 (9)0.69785 (9)0.42095 (8)0.0236 (4)
H80.31920.67510.45320.028*
C90.25237 (9)0.65638 (9)0.37590 (7)0.0216 (3)
H90.25720.60490.37690.026*
C100.20707 (8)0.68960 (8)0.32758 (7)0.0173 (3)
C110.38543 (9)0.50923 (8)0.34589 (7)0.0184 (3)
C120.40191 (8)0.53220 (8)0.41573 (7)0.0164 (3)
C130.36025 (9)0.49993 (9)0.46699 (8)0.0203 (3)
H130.32140.46620.45770.024*
C140.37688 (9)0.51806 (9)0.53016 (8)0.0218 (3)
H140.35050.49600.56520.026*
C150.43344 (9)0.56978 (9)0.54274 (7)0.0192 (3)
C160.45424 (10)0.59128 (9)0.60692 (8)0.0238 (4)
H160.43010.57000.64350.029*
C170.50871 (10)0.64237 (10)0.61602 (8)0.0272 (4)
H170.52200.65660.65900.033*
C180.54557 (10)0.67443 (10)0.56217 (8)0.0264 (4)
H180.58330.71000.56930.032*
C190.52729 (9)0.65450 (9)0.49966 (8)0.0225 (3)
H190.55230.67630.46380.027*
C200.47121 (8)0.60139 (8)0.48864 (7)0.0175 (3)
H20.0082 (13)0.6266 (11)0.1393 (10)0.057 (8)*
H30.433 (2)0.512 (3)0.2662 (12)0.051 (14)*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
K10.0202 (2)0.0198 (2)0.0225 (2)0.0000.000−0.00261 (19)
O10.0249 (6)0.0250 (6)0.0270 (6)0.0012 (5)−0.0050 (5)−0.0085 (5)
O20.0218 (6)0.0250 (6)0.0227 (6)−0.0007 (5)−0.0062 (5)−0.0032 (5)
O30.0272 (6)0.0359 (7)0.0140 (6)−0.0066 (5)0.0024 (5)−0.0049 (5)
O40.0262 (6)0.0257 (6)0.0217 (6)−0.0064 (5)−0.0023 (5)−0.0033 (5)
N10.0183 (6)0.0201 (7)0.0163 (6)−0.0014 (5)0.0018 (5)−0.0021 (5)
N20.0176 (6)0.0182 (7)0.0154 (6)0.0019 (5)0.0001 (5)−0.0012 (5)
C10.0183 (7)0.0215 (8)0.0171 (7)−0.0022 (6)0.0020 (6)−0.0008 (6)
C20.0150 (7)0.0214 (8)0.0161 (7)−0.0016 (6)0.0026 (6)−0.0026 (6)
C30.0175 (7)0.0225 (8)0.0180 (7)0.0013 (6)0.0008 (6)0.0002 (6)
C40.0180 (7)0.0195 (8)0.0210 (7)0.0012 (6)0.0044 (6)−0.0027 (6)
C50.0148 (7)0.0207 (8)0.0182 (7)0.0000 (6)0.0038 (6)−0.0034 (6)
C60.0205 (8)0.0215 (8)0.0211 (7)−0.0017 (6)0.0036 (6)−0.0051 (6)
C70.0212 (8)0.0304 (9)0.0191 (7)−0.0024 (7)0.0008 (6)−0.0070 (7)
C80.0224 (8)0.0305 (9)0.0178 (7)0.0036 (7)−0.0023 (6)−0.0014 (6)
C90.0224 (8)0.0225 (8)0.0198 (7)0.0031 (6)0.0012 (6)−0.0018 (6)
C100.0168 (7)0.0198 (8)0.0154 (7)−0.0005 (6)0.0037 (5)−0.0029 (6)
C110.0214 (8)0.0169 (8)0.0169 (7)0.0021 (6)−0.0018 (6)−0.0009 (6)
C120.0160 (7)0.0171 (7)0.0162 (7)0.0031 (6)−0.0001 (5)−0.0011 (6)
C130.0213 (8)0.0196 (8)0.0201 (7)−0.0021 (6)−0.0004 (6)0.0008 (6)
C140.0245 (8)0.0241 (9)0.0168 (7)0.0008 (7)0.0020 (6)0.0022 (6)
C150.0214 (8)0.0198 (8)0.0164 (7)0.0056 (6)−0.0011 (6)−0.0020 (6)
C160.0285 (9)0.0275 (9)0.0155 (7)0.0066 (7)−0.0007 (6)−0.0024 (6)
C170.0301 (9)0.0299 (9)0.0216 (8)0.0075 (7)−0.0070 (7)−0.0094 (7)
C180.0231 (8)0.0255 (9)0.0306 (9)0.0022 (7)−0.0066 (7)−0.0077 (7)
C190.0210 (8)0.0226 (8)0.0239 (8)0.0006 (7)−0.0009 (6)−0.0027 (6)
C200.0176 (7)0.0180 (8)0.0170 (7)0.0050 (6)−0.0010 (6)−0.0018 (6)

Geometric parameters (Å, °)

K1—O42.6622 (12)C6—C71.369 (2)
K1—O4i2.6622 (12)C6—H60.9500
K1—O1i2.6653 (12)C7—C81.421 (2)
K1—O12.6653 (12)C7—H70.9500
K1—N1i2.8820 (13)C8—C91.365 (2)
K1—N12.8820 (13)C8—H80.9500
O1—C11.2137 (19)C9—C101.418 (2)
O2—C11.3163 (19)C9—H90.9500
O2—H20.846 (10)C11—C121.522 (2)
O3—C111.2765 (19)C12—C131.418 (2)
O3—H30.836 (10)C13—C141.371 (2)
O4—C111.2327 (19)C13—H130.9500
N1—C21.323 (2)C14—C151.411 (2)
N1—C101.3742 (19)C14—H140.9500
N2—C121.320 (2)C15—C201.423 (2)
N2—C201.3777 (19)C15—C161.424 (2)
C1—C21.516 (2)C16—C171.365 (2)
C2—C31.413 (2)C16—H160.9500
C3—C41.370 (2)C17—C181.414 (3)
C3—H3A0.9500C17—H170.9500
C4—C51.416 (2)C18—C191.373 (2)
C4—H40.9500C18—H180.9500
C5—C61.424 (2)C19—C201.416 (2)
C5—C101.423 (2)C19—H190.9500
O4—K1—O4i85.93 (5)C6—C7—H7119.7
O4—K1—O1i92.93 (4)C8—C7—H7119.7
O4i—K1—O1i162.38 (3)C9—C8—C7120.31 (15)
O4—K1—O1162.38 (4)C9—C8—H8119.8
O4i—K1—O192.93 (4)C7—C8—H8119.8
O1i—K1—O193.36 (5)C8—C9—C10120.50 (15)
O4—K1—N1i101.25 (4)C8—C9—H9119.7
O4i—K1—N1i103.07 (4)C10—C9—H9119.7
O1i—K1—N1i59.88 (4)N1—C10—C9118.60 (14)
O1—K1—N1i96.14 (4)N1—C10—C5122.02 (14)
O4—K1—N1103.07 (4)C9—C10—C5119.38 (14)
O4i—K1—N1101.25 (4)O4—C11—O3126.64 (14)
O1i—K1—N196.14 (4)O4—C11—C12118.16 (14)
O1—K1—N159.88 (4)O3—C11—C12115.20 (13)
N1i—K1—N1146.55 (5)N2—C12—C13123.15 (14)
C1—O1—K1123.47 (10)N2—C12—C11118.12 (13)
C1—O2—H2112.7 (17)C13—C12—C11118.73 (13)
C11—O3—H3120 (3)C14—C13—C12119.07 (15)
C11—O4—K1129.15 (10)C14—C13—H13120.5
C2—N1—C10117.50 (13)C12—C13—H13120.5
C2—N1—K1115.60 (10)C13—C14—C15119.46 (15)
C10—N1—K1124.64 (10)C13—C14—H14120.3
C12—N2—C20118.69 (13)C15—C14—H14120.3
O1—C1—O2125.07 (14)C14—C15—C20118.15 (14)
O1—C1—C2122.68 (14)C14—C15—C16122.87 (15)
O2—C1—C2112.25 (13)C20—C15—C16118.97 (15)
N1—C2—C3124.42 (14)C17—C16—C15120.21 (16)
N1—C2—C1115.38 (14)C17—C16—H16119.9
C3—C2—C1120.19 (13)C15—C16—H16119.9
C4—C3—C2118.55 (14)C16—C17—C18120.75 (15)
C4—C3—H3A120.7C16—C17—H17119.6
C2—C3—H3A120.7C18—C17—H17119.6
C3—C4—C5119.35 (15)C19—C18—C17120.52 (16)
C3—C4—H4120.3C19—C18—H18119.7
C5—C4—H4120.3C17—C18—H18119.7
C4—C5—C6123.06 (15)C18—C19—C20120.06 (16)
C4—C5—C10118.02 (14)C18—C19—H19120.0
C6—C5—C10118.92 (14)C20—C19—H19120.0
C7—C6—C5120.24 (15)N2—C20—C19119.10 (14)
C7—C6—H6119.9N2—C20—C15121.42 (14)
C5—C6—H6119.9C19—C20—C15119.47 (14)
C6—C7—C8120.63 (15)
O4—K1—O1—C1−19.8 (2)C6—C7—C8—C90.6 (2)
O4i—K1—O1—C1−105.57 (12)C7—C8—C9—C10−0.2 (2)
O1i—K1—O1—C190.90 (12)C2—N1—C10—C9177.15 (13)
N1i—K1—O1—C1150.95 (12)K1—N1—C10—C9−20.70 (18)
N1—K1—O1—C1−4.26 (11)C2—N1—C10—C5−3.3 (2)
O4i—K1—O4—C1145.39 (12)K1—N1—C10—C5158.83 (10)
O1i—K1—O4—C11−152.23 (13)C8—C9—C10—N1178.53 (14)
O1—K1—O4—C11−41.5 (2)C8—C9—C10—C5−1.0 (2)
N1i—K1—O4—C11147.92 (13)C4—C5—C10—N12.2 (2)
N1—K1—O4—C11−55.23 (13)C6—C5—C10—N1−177.82 (13)
O4—K1—N1—C2167.93 (10)C4—C5—C10—C9−178.25 (14)
O4i—K1—N1—C279.54 (11)C6—C5—C10—C91.7 (2)
O1i—K1—N1—C2−97.62 (10)K1—O4—C11—O3−53.0 (2)
O1—K1—N1—C2−7.30 (10)K1—O4—C11—C12127.14 (12)
N1i—K1—N1—C2−56.46 (10)C20—N2—C12—C130.2 (2)
O4—K1—N1—C105.47 (12)C20—N2—C12—C11−179.12 (13)
O4i—K1—N1—C10−82.91 (11)O4—C11—C12—N2−167.51 (14)
O1i—K1—N1—C1099.93 (11)O3—C11—C12—N212.7 (2)
O1—K1—N1—C10−169.75 (13)O4—C11—C12—C1313.2 (2)
N1i—K1—N1—C10141.09 (12)O3—C11—C12—C13−166.67 (14)
K1—O1—C1—O2−165.66 (11)N2—C12—C13—C14−2.0 (2)
K1—O1—C1—C214.9 (2)C11—C12—C13—C14177.30 (14)
C10—N1—C2—C31.0 (2)C12—C13—C14—C151.8 (2)
K1—N1—C2—C3−162.79 (11)C13—C14—C15—C200.1 (2)
C10—N1—C2—C1179.71 (12)C13—C14—C15—C16−179.71 (15)
K1—N1—C2—C115.95 (16)C14—C15—C16—C17−179.08 (15)
O1—C1—C2—N1−21.4 (2)C20—C15—C16—C171.1 (2)
O2—C1—C2—N1159.12 (13)C15—C16—C17—C18−0.3 (2)
O1—C1—C2—C3157.39 (15)C16—C17—C18—C19−0.2 (3)
O2—C1—C2—C3−22.09 (19)C17—C18—C19—C20−0.1 (2)
N1—C2—C3—C42.5 (2)C12—N2—C20—C19−178.94 (14)
C1—C2—C3—C4−176.21 (14)C12—N2—C20—C151.8 (2)
C2—C3—C4—C5−3.5 (2)C18—C19—C20—N2−178.40 (14)
C3—C4—C5—C6−178.65 (14)C18—C19—C20—C150.9 (2)
C3—C4—C5—C101.3 (2)C14—C15—C20—N2−1.9 (2)
C4—C5—C6—C7178.70 (15)C16—C15—C20—N2177.87 (14)
C10—C5—C6—C7−1.3 (2)C14—C15—C20—C19178.81 (14)
C5—C6—C7—C80.1 (2)C16—C15—C20—C19−1.4 (2)

Symmetry codes: (i) x, −y+1, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···N2ii0.85 (1)1.84 (1)2.671 (2)167 (2)
O3—H3···O3i0.84 (1)1.62 (1)2.452 (2)175 (6)

Symmetry codes: (ii) x−1/2, y, −z+1/2; (i) x, −y+1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2182).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr.34, 51–55.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography