PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1882.
Published online 2010 July 3. doi:  10.1107/S1600536810024669
PMCID: PMC3007477

anti-1′,6′,7′,8′,9′,14′,15′,16′-Octa­chloro­dispiro­[1,3-dioxolane-2,17′-penta­cyclo­[12.2.1.16,9.02,13.05,10]octa­decane-18′,2′′-1,3-dioxolane]-7′,15′-diene

Abstract

The title compound, C22H20Cl8O4, was prepared as part of the synthesis of precursors for the preparation of fluorinated mol­ecular tweezers. The mol­ecule sits on an inversion center, thus requiring that the cyclo­octane ring adopt a chair conformation.

Related literature

For related structures, see: Garcia et al. (1991b [triangle],c [triangle]). For related chemistry on analogous polycyclic scaffolds, see: Garcia et al. (1991a [triangle]); Chou et al. (2005 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-66-o1882-scheme1.jpg

Experimental

Crystal data

  • C22H20Cl8O4
  • M r = 631.98
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1882-efi1.jpg
  • a = 9.5332 (7) Å
  • b = 7.9121 (6) Å
  • c = 17.014 (2) Å
  • β = 101.099 (8)°
  • V = 1259.3 (2) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 8.44 mm−1
  • T = 295 K
  • 0.25 × 0.20 × 0.08 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.190, T max = 0.561
  • 4703 measured reflections
  • 2275 independent reflections
  • 1702 reflections with I > 2σ(I)
  • R int = 0.047
  • 3 standard reflections every 62 reflections intensity decay: 13%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.118
  • S = 1.05
  • 2275 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: DIRDIF08 (Beurskens et al., 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024669/jh2171sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024669/jh2171Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported in part by funds provided by The University of North Carolina at Charlotte.

supplementary crystallographic information

Comment

The twofold Diels-Alder reaction of cyclooctadiene 1 with two equivalents of cyclopentadiene or cyclopentadienone derivatives (2a-c) furnishes the corresponding polycyclic bisadducts endo,endo,syn-3 and endo,endo,anti- 4 in a 1:4 ratio (Garcia et al., 1991a,b,c). For the synthesis of compounds with new luminescent properties (Chou et al., 2005) or the construction of molecular tweezers syn derivative 3 is an ideal starting material with the required orientation of both double bonds on one side of the molecule. Nevertheless, the separation of syn isomer 3c from anti ketal 4c prior to subsequent functionalization was often unsatisfactory in our hands. Thus, we converted cyclooctadiene 1 with the spiroketal 2 d to the spiropolycyclic bisadducts 3 d and 4 d in 85–90% yield, typically with an isomer distribution that did not differ significantly from the non-spirocyclic ketal case (1+2c). Furthermore, compound 3 d was easily separated from anti-isomer 4 d by repeated recrystallization from hot diethyl ether, i.e., the ether solution becomes more enriched in syn-isomer 3 d, and initially the clean anti-isomer 4 d precipitates upon cooling. We were able to grow single crystals of 4 d from chloroform and determined the crystal structure of compound 4 d, thus confirming the correct spectroscopic assignment of both isomers.

Two closely related structures have been found. The first (Garcia et al., 1991b) has an open ketal structure on each of the bridgehead carbon atoms, while the second (Garcia et al., 1991c) has no substituents on the bridgehead carbon atoms. Each of these two structures sits on an inversion center and thus assumes a conformation nearly identical to that of the title compound.

Experimental

A mixture of cyclooctadiene 1 (3 g, 29 mmol) and spiroketal 2 d (15 g, 57 mmol) was refluxed in toluene (5 ml) for three hours. The beige paste was filtered, washed with methylene chloride (70 ml), dried and washed again with methanol (ca 15 ml) to remove small amounts of the mono-Diels-Alder adduct. The remaining colorless solid (14.5 g, 83%) contained a 1:4 mixture of 3 d and 4 d, respectively. After one recrystallization from hot diethyl ether the pure anti-isomer 4 d was obtained as a colorless precipitate.

Mp.> 295 °C (decomposition); IR (KBr): ν~ = 2952, 2905 (CH2),1596 (C═C), 1467 (CH2 deformation), 1355, 1284, 1267, 1245, 1222, 1181, 1132, 1105,1091, 1037 (C—Cl), 1009, 946, 891, 851, 809, 770, 730 cm-1; 1H NMR (CDCl3 ; 500 MHz): δ = 4.20–4.10 (m, 8H; H-4, -5, -4", -5"), 2.78–2.62 (m, 4H; H-2', -5', 10', -13'), 2.20–2.00 (m, 4H; H-3', -4', -11', -12'), 0.95–0.75 (m, 4H; H-3', -4', -11', -12'); 13C NMR (CDCL3,75.6 MHz): δ=128.5 (C-7', -8', -15', -16'), 120.5 (C-17', -18'), 77.6 (C-1', -6', 9', -14'), 67.7* (C-4, -4"), 66.5* (C-5, -5"), 51.8(C-2', -5', -10', 13'), 21.9 (C-3', -4', -11', -12'); EA: calc. C (41.81) H (3.19); found C: 41.83, H: 3.16 (calc.).

Refinement

H atoms were constrained using a riding model. The methylene C—H bond lengths were fixed at 0.97 Å and the methine C—H bond lengths at 0.98 Å, with Uiso(H) = 1.2 Ueq. (C).

Figures

Fig. 1.
A view of the title compound with 50% probability displacement ellipsoids. [Symmetry code: (i) -x + 2, -y + 2, -z + 2]
Fig. 2.
Synthesis scheme.

Crystal data

C22H20Cl8O4F(000) = 640
Mr = 631.98Dx = 1.677 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.5332 (7) Åθ = 5.3–18.2°
b = 7.9121 (6) ŵ = 8.44 mm1
c = 17.014 (2) ÅT = 295 K
β = 101.099 (8)°Prism, colorless
V = 1259.3 (2) Å30.25 × 0.20 × 0.08 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.047
graphiteθmax = 67.4°, θmin = 4.7°
non–profiled ω/2θ scansh = −11→11
Absorption correction: multi-scan (Blessing, 1995)k = −9→9
Tmin = 0.190, Tmax = 0.561l = −20→0
4703 measured reflections3 standard reflections every 62 reflections
2275 independent reflections intensity decay: 13%
1702 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.118w = 1/[σ2(Fo2) + (0.0607P)2 + 0.5139P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2275 reflectionsΔρmax = 0.36 e Å3
155 parametersΔρmin = −0.47 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0010 (3)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.56200 (8)0.74022 (12)1.00965 (5)0.0547 (3)
Cl40.77203 (10)0.88651 (12)0.73738 (5)0.0557 (3)
Cl20.79698 (10)0.44785 (12)0.98707 (7)0.0657 (3)
Cl30.93205 (10)0.54119 (14)0.82005 (6)0.0648 (3)
O10.5602 (2)0.9949 (3)0.85728 (14)0.0479 (5)
O20.5274 (2)0.7211 (3)0.81904 (14)0.0494 (6)
C50.7945 (3)0.9248 (4)0.97774 (18)0.0380 (6)
H50.73851.02230.98950.046*
C100.9019 (3)0.8836 (4)1.05363 (19)0.0410 (7)
H10A0.97040.80281.04050.049*
H10B0.85170.82961.09140.049*
C110.9836 (3)1.0369 (4)1.09459 (19)0.0434 (7)
H11A0.94661.13791.06550.052*
H11B0.96431.04631.14830.052*
C70.7734 (3)0.8387 (4)0.83817 (19)0.0424 (7)
C10.4108 (3)0.9714 (5)0.8255 (2)0.0544 (9)
H1A0.37191.06660.79250.065*
H1B0.35740.95740.86820.065*
C80.8224 (3)0.6619 (4)0.8649 (2)0.0439 (7)
C60.8545 (3)0.9680 (4)0.89984 (17)0.0381 (6)
H60.82121.08150.88220.046*
C30.6241 (3)0.8363 (4)0.86189 (19)0.0404 (7)
C40.6875 (3)0.7784 (4)0.94892 (18)0.0392 (7)
C90.7714 (3)0.6257 (4)0.9301 (2)0.0432 (7)
C20.4067 (4)0.8167 (6)0.7776 (3)0.0729 (12)
H2A0.3180.75550.77620.088*
H2B0.41670.84220.72320.088*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0427 (4)0.0648 (5)0.0619 (5)−0.0091 (4)0.0232 (4)−0.0018 (4)
Cl40.0560 (5)0.0698 (6)0.0420 (4)−0.0103 (4)0.0113 (3)−0.0032 (4)
Cl20.0621 (6)0.0497 (5)0.0861 (7)0.0058 (4)0.0161 (5)0.0163 (4)
Cl30.0525 (5)0.0752 (6)0.0686 (6)0.0162 (4)0.0161 (4)−0.0218 (5)
O10.0365 (11)0.0445 (12)0.0602 (14)0.0041 (9)0.0033 (10)−0.0058 (10)
O20.0357 (11)0.0508 (13)0.0591 (14)−0.0048 (9)0.0021 (10)−0.0114 (11)
C50.0330 (14)0.0402 (15)0.0423 (16)−0.0014 (12)0.0113 (12)−0.0037 (12)
C100.0362 (15)0.0455 (16)0.0430 (16)−0.0041 (13)0.0119 (13)0.0019 (13)
C110.0381 (16)0.0537 (18)0.0406 (17)−0.0047 (13)0.0127 (13)−0.0034 (14)
C70.0374 (15)0.0500 (18)0.0412 (16)−0.0025 (14)0.0108 (13)−0.0043 (13)
C10.0339 (16)0.062 (2)0.065 (2)0.0057 (15)0.0040 (15)0.0036 (17)
C80.0331 (14)0.0465 (17)0.0527 (18)0.0015 (13)0.0097 (13)−0.0124 (14)
C60.0356 (15)0.0406 (15)0.0388 (16)−0.0018 (12)0.0086 (12)−0.0017 (12)
C30.0331 (15)0.0401 (15)0.0474 (17)−0.0008 (12)0.0061 (13)−0.0062 (13)
C40.0329 (14)0.0427 (16)0.0442 (16)−0.0007 (12)0.0126 (12)−0.0020 (13)
C90.0361 (15)0.0390 (15)0.0538 (19)0.0000 (13)0.0071 (14)−0.0007 (14)
C20.046 (2)0.077 (3)0.085 (3)0.008 (2)−0.014 (2)−0.015 (2)

Geometric parameters (Å, °)

Cl1—C41.751 (3)C11—H11A0.97
Cl4—C71.754 (3)C11—H11B0.97
Cl2—C91.700 (3)C7—C81.516 (4)
Cl3—C81.701 (3)C7—C31.553 (4)
O1—C31.391 (4)C7—C61.560 (4)
O1—C11.435 (4)C1—C21.467 (6)
O2—C31.397 (4)C1—H1A0.97
O2—C21.443 (4)C1—H1B0.97
C5—C101.521 (4)C8—C91.326 (5)
C5—C41.559 (4)C6—C11i1.528 (4)
C5—C61.579 (4)C6—H60.98
C5—H50.98C3—C41.557 (4)
C10—C111.535 (4)C4—C91.517 (4)
C10—H10A0.97C2—H2A0.97
C10—H10B0.97C2—H2B0.97
C11—C6i1.528 (4)
C3—O1—C1107.2 (2)H1A—C1—H1B109
C3—O2—C2107.3 (3)C9—C8—C7108.0 (3)
C10—C5—C4113.6 (3)C9—C8—Cl3127.6 (3)
C10—C5—C6117.7 (2)C7—C8—Cl3124.3 (2)
C4—C5—C6102.6 (2)C11i—C6—C7112.9 (2)
C10—C5—H5107.5C11i—C6—C5117.9 (2)
C4—C5—H5107.5C7—C6—C5102.1 (2)
C6—C5—H5107.5C11i—C6—H6107.8
C5—C10—C11114.6 (3)C7—C6—H6107.8
C5—C10—H10A108.6C5—C6—H6107.8
C11—C10—H10A108.6O1—C3—O2108.7 (2)
C5—C10—H10B108.6O1—C3—C7112.8 (3)
C11—C10—H10B108.6O2—C3—C7114.7 (3)
H10A—C10—H10B107.6O1—C3—C4113.9 (2)
C6i—C11—C10115.3 (3)O2—C3—C4113.6 (3)
C6i—C11—H11A108.5C7—C3—C492.5 (2)
C10—C11—H11A108.5C9—C4—C399.0 (2)
C6i—C11—H11B108.5C9—C4—C5108.6 (2)
C10—C11—H11B108.5C3—C4—C5101.0 (2)
H11A—C11—H11B107.5C9—C4—Cl1115.8 (2)
C8—C7—C399.0 (2)C3—C4—Cl1115.3 (2)
C8—C7—C6108.6 (3)C5—C4—Cl1115.0 (2)
C3—C7—C6101.2 (2)C8—C9—C4107.3 (3)
C8—C7—Cl4115.9 (2)C8—C9—Cl2128.4 (3)
C3—C7—Cl4115.0 (2)C4—C9—Cl2124.2 (2)
C6—C7—Cl4115.2 (2)O2—C2—C1103.4 (3)
O1—C1—C2103.6 (3)O2—C2—H2A111.1
O1—C1—H1A111C1—C2—H2A111.1
C2—C1—H1A111O2—C2—H2B111.1
O1—C1—H1B111C1—C2—H2B111.1
C2—C1—H1B111H2A—C2—H2B109

Symmetry codes: (i) −x+2, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2171).

References

  • Beurskens, P. T., Beurskens, G., de Gelder, R., Garciía-Granda, S., Gould, R. O. & Smits, J. M. M. (2008). The DIRDIF2008 Program System Crystallography Laboratory, University of Nijmegen, The Netherlands.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Chou, T.-H., Liao, K.-C. & Lin, J.-J. (2005). Org. Lett.7, 4843–4846. [PubMed]
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991a). Acta Cryst. C47, 206–209.
  • Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991b). Acta Cryst. C47, 451–453.
  • Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991c). Tetrahedron Lett.32, 3289–3292.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography