PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2149.
Published online 2010 July 31. doi:  10.1107/S160053681002934X
PMCID: PMC3007473

1,5-Dimethyl-2-phenyl-4-{[(E)-3,4,5-trimethoxybenzylidene]amino}-1H-pyrazol-3(2H)-one

Abstract

In the title compound, C21H23N3O4, the pyrazole ring forms dihedral angles of 21.58 (8) and 66.64 (7)° with the benzene and phenyl rings, respectively. The crystal structure is stabilized by weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For general background to Schiff base compounds, see: Atwood & Harvey (2001 [triangle]); Che & Huang (2003 [triangle]). For the applications of metal–Schiff base complexes, see: Drozdzak et al. (2005 [triangle]); Adsule et al. (2006 [triangle]); Yuan et al. (2007 [triangle]). For a related structure, see: Sun et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2149-scheme1.jpg

Experimental

Crystal data

  • C21H23N3O4
  • M r = 381.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2149-efi1.jpg
  • a = 12.3644 (12) Å
  • b = 14.0075 (16) Å
  • c = 11.2682 (11) Å
  • β = 96.4680 (1)°
  • V = 1939.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.40 × 0.17 × 0.13 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.964, T max = 0.988
  • 10089 measured reflections
  • 3422 independent reflections
  • 2084 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.098
  • S = 0.99
  • 3422 reflections
  • 258 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002934X/lh5091sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002934X/lh5091Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the National Science Foundation of China for its financial support of this project (grant No. 20971115).

supplementary crystallographic information

Comment

Schiff bases are among the most fundamental chelating systems in coordination chemistry (Atwood et al., 2001; Che et al., 2003). The metal complexes based on this type ligands have expanded enormously areas of catalytic activities (Drozdzak et al., 2005), molecular magnetism (Yuan et al., 2007) and biological activities, such as antitumor activities (Adsule et al., 2006). The examples given above clearly demonstrate that Schiff base ligands are of special interest in the field of chemistry. Herein, we present the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles can be compared to those in a related structure (Sun et al., 2007). The dihedral angles between the pyrazole ring and the benzene and phenyl rings are 21.58 (8)° and 66.64 (7)°, respectively. The crystal structure is stabilized by by weak intermolecular C—H···O hydrogen bonds.

Experimental

4-aminoantpyrine (10 mmol, 2.032 g) was added with stirring to anhydrous ethanol (30 ml) and an anhydrous ethanol solution (10 ml) of 3,4,5-trimethoxybenzaldehyde (10 mmol, 1.962 g) was slowly added. The reaction mixture was stirred at 353 K for 5 h, whereupon a yellow solid separated out. The precipitate formed was filtered off, washed several times with anhydrous ethanol and dried under vacuum. Yellow block-shaped crystals were obtained from an anhydrous ethanol solution of the title compound after 2 days by slow evaporation at room temperature.

Refinement

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.96 Å Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
Part of the crystal structure showing weak C—H···O hydrogen bonds as dashed lines. Only H atoms involved in hydrogen bonds are shown.

Crystal data

C21H23N3O4F(000) = 808
Mr = 381.42Dx = 1.306 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2128 reflections
a = 12.3644 (12) Åθ = 2.2–25.3°
b = 14.0075 (16) ŵ = 0.09 mm1
c = 11.2682 (11) ÅT = 298 K
β = 96.4680 (1)°Block, yellow
V = 1939.2 (3) Å30.40 × 0.17 × 0.13 mm
Z = 4

Data collection

Siemens SMART CCD diffractometer3422 independent reflections
Radiation source: fine-focus sealed tube2084 reflections with I > 2σ(I)
graphiteRint = 0.038
[var phi] and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.964, Tmax = 0.988k = −16→12
10089 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.039P)2] where P = (Fo2 + 2Fc2)/3
3422 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.58862 (12)0.17160 (11)0.75617 (14)0.0483 (4)
N20.55362 (12)0.07674 (11)0.73659 (14)0.0488 (4)
N30.38480 (12)0.18932 (11)0.49987 (13)0.0456 (4)
O10.56035 (11)0.31372 (9)0.65254 (13)0.0616 (4)
O20.14379 (11)0.51801 (9)0.24428 (12)0.0597 (4)
O30.06093 (10)0.38623 (9)0.08868 (12)0.0555 (4)
O40.12137 (12)0.20441 (10)0.10776 (12)0.0641 (4)
C10.53561 (15)0.22988 (14)0.66664 (17)0.0451 (5)
C20.45678 (14)0.16819 (13)0.60050 (16)0.0415 (5)
C30.46934 (14)0.07841 (13)0.64717 (17)0.0425 (5)
C40.40708 (16)−0.00978 (13)0.61267 (19)0.0568 (6)
H4A0.4568−0.06130.60420.085*
H4B0.36280.00040.53820.085*
H4C0.3614−0.02550.67330.085*
C50.55506 (17)0.01888 (15)0.8440 (2)0.0682 (7)
H5A0.50770.04680.89630.102*
H5B0.62780.01620.88380.102*
H5C0.5306−0.04450.82270.102*
C60.70012 (16)0.18510 (13)0.80311 (17)0.0460 (5)
C70.72641 (19)0.24765 (15)0.89492 (19)0.0645 (6)
H70.67220.28070.92860.077*
C80.8353 (2)0.26125 (18)0.9374 (2)0.0788 (8)
H80.85440.30470.99850.095*
C90.9143 (2)0.2109 (2)0.8894 (3)0.0798 (8)
H90.98710.22000.91820.096*
C100.88698 (18)0.14758 (18)0.7999 (2)0.0765 (7)
H100.94110.11290.76830.092*
C110.78040 (17)0.13441 (15)0.7557 (2)0.0613 (6)
H110.76220.09130.69390.074*
C120.36413 (15)0.27582 (14)0.47241 (17)0.0478 (5)
H120.39860.32350.52010.057*
C130.28837 (15)0.30404 (13)0.36894 (16)0.0429 (5)
C140.25703 (15)0.39875 (13)0.35636 (17)0.0463 (5)
H140.28680.44370.41140.056*
C150.18193 (15)0.42704 (13)0.26269 (17)0.0439 (5)
C160.13902 (15)0.36017 (14)0.17957 (17)0.0446 (5)
C170.17022 (15)0.26509 (14)0.19268 (16)0.0460 (5)
C180.24460 (15)0.23685 (14)0.28662 (16)0.0461 (5)
H180.26530.17310.29470.055*
C190.17650 (18)0.58758 (14)0.33332 (19)0.0658 (6)
H19A0.15780.56590.40920.099*
H19B0.14000.64680.31290.099*
H19C0.25380.59700.33790.099*
C200.10337 (18)0.41981 (17)−0.01563 (19)0.0735 (7)
H20A0.13880.48010.00090.110*
H20B0.04500.4275−0.07870.110*
H20C0.15490.3745−0.03960.110*
C210.12836 (19)0.10573 (14)0.1296 (2)0.0703 (7)
H21A0.20300.08590.13410.105*
H21B0.08640.07220.06600.105*
H21C0.10050.09170.20380.105*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0450 (10)0.0437 (10)0.0528 (11)−0.0016 (8)−0.0099 (8)0.0052 (8)
N20.0480 (10)0.0402 (10)0.0556 (11)−0.0017 (8)−0.0053 (8)0.0121 (9)
N30.0477 (10)0.0446 (10)0.0427 (10)0.0030 (7)−0.0027 (8)0.0051 (8)
O10.0657 (10)0.0377 (9)0.0756 (11)−0.0008 (7)−0.0176 (8)0.0059 (7)
O20.0717 (10)0.0454 (9)0.0582 (9)0.0105 (7)−0.0101 (8)0.0030 (7)
O30.0515 (9)0.0663 (10)0.0453 (9)0.0047 (7)−0.0093 (7)0.0096 (7)
O40.0802 (11)0.0523 (10)0.0538 (9)−0.0018 (7)−0.0188 (8)−0.0043 (8)
C10.0445 (12)0.0400 (12)0.0493 (13)0.0061 (9)−0.0022 (9)0.0020 (10)
C20.0419 (11)0.0415 (12)0.0397 (12)0.0043 (9)−0.0018 (9)0.0029 (9)
C30.0392 (11)0.0427 (12)0.0450 (12)0.0038 (9)0.0019 (9)0.0027 (10)
C40.0553 (13)0.0479 (13)0.0663 (15)−0.0039 (10)0.0024 (11)0.0001 (11)
C50.0662 (15)0.0656 (15)0.0695 (16)−0.0030 (12)−0.0064 (12)0.0279 (13)
C60.0470 (12)0.0438 (12)0.0441 (12)−0.0020 (10)−0.0088 (10)0.0079 (10)
C70.0706 (16)0.0645 (15)0.0557 (14)0.0010 (12)−0.0050 (12)−0.0033 (12)
C80.089 (2)0.0772 (18)0.0617 (16)−0.0245 (16)−0.0266 (15)−0.0002 (14)
C90.0563 (16)0.085 (2)0.091 (2)−0.0145 (14)−0.0253 (15)0.0310 (17)
C100.0463 (15)0.0813 (18)0.101 (2)0.0010 (12)0.0043 (14)0.0130 (16)
C110.0518 (14)0.0638 (15)0.0668 (16)0.0008 (11)−0.0005 (12)−0.0037 (12)
C120.0491 (12)0.0481 (13)0.0437 (12)0.0007 (10)−0.0051 (9)0.0011 (10)
C130.0425 (11)0.0478 (12)0.0367 (11)0.0008 (9)−0.0027 (9)0.0051 (10)
C140.0513 (12)0.0453 (12)0.0403 (12)−0.0034 (9)−0.0038 (9)0.0006 (9)
C150.0455 (12)0.0415 (11)0.0437 (12)0.0031 (9)0.0001 (9)0.0061 (10)
C160.0407 (11)0.0524 (13)0.0387 (12)0.0022 (9)−0.0039 (9)0.0072 (10)
C170.0500 (12)0.0494 (13)0.0372 (12)−0.0040 (10)−0.0012 (10)−0.0016 (10)
C180.0515 (12)0.0425 (12)0.0429 (12)0.0027 (9)−0.0010 (10)0.0035 (10)
C190.0833 (17)0.0464 (13)0.0663 (15)0.0053 (12)0.0020 (13)−0.0007 (12)
C200.0790 (17)0.0973 (19)0.0432 (14)0.0217 (14)0.0019 (12)0.0140 (13)
C210.0875 (18)0.0523 (15)0.0675 (16)−0.0072 (12)−0.0063 (13)−0.0076 (12)

Geometric parameters (Å, °)

N1—C11.402 (2)C8—C91.364 (3)
N1—N21.407 (2)C8—H80.9300
N1—C61.432 (2)C9—C101.357 (3)
N2—C31.366 (2)C9—H90.9300
N2—C51.455 (2)C10—C111.368 (3)
N3—C121.269 (2)C10—H100.9300
N3—C21.392 (2)C11—H110.9300
O1—C11.228 (2)C12—C131.465 (3)
O2—C151.367 (2)C12—H120.9300
O2—C191.424 (2)C13—C141.385 (2)
O3—C161.375 (2)C13—C181.388 (2)
O3—C201.420 (2)C14—C151.383 (3)
O4—C171.368 (2)C14—H140.9300
O4—C211.405 (2)C15—C161.387 (3)
C1—C21.445 (3)C16—C171.390 (3)
C2—C31.365 (2)C17—C181.380 (2)
C3—C41.484 (2)C18—H180.9300
C4—H4A0.9600C19—H19A0.9600
C4—H4B0.9600C19—H19B0.9600
C4—H4C0.9600C19—H19C0.9600
C5—H5A0.9600C20—H20A0.9600
C5—H5B0.9600C20—H20B0.9600
C5—H5C0.9600C20—H20C0.9600
C6—C71.367 (3)C21—H21A0.9600
C6—C111.376 (3)C21—H21B0.9600
C7—C81.391 (3)C21—H21C0.9600
C7—H70.9300
C1—N1—N2109.06 (15)C9—C10—H10119.7
C1—N1—C6122.78 (15)C11—C10—H10119.7
N2—N1—C6116.67 (14)C10—C11—C6119.8 (2)
C3—N2—N1107.16 (14)C10—C11—H11120.1
C3—N2—C5124.06 (15)C6—C11—H11120.1
N1—N2—C5114.90 (16)N3—C12—C13122.99 (18)
C12—N3—C2119.61 (16)N3—C12—H12118.5
C15—O2—C19117.73 (15)C13—C12—H12118.5
C16—O3—C20114.23 (15)C14—C13—C18119.85 (18)
C17—O4—C21118.35 (16)C14—C13—C12119.09 (18)
O1—C1—N1123.15 (18)C18—C13—C12121.01 (17)
O1—C1—C2131.93 (18)C15—C14—C13120.58 (18)
N1—C1—C2104.86 (16)C15—C14—H14119.7
C3—C2—N3122.96 (17)C13—C14—H14119.7
C3—C2—C1108.14 (16)O2—C15—C14125.01 (18)
N3—C2—C1128.69 (17)O2—C15—C16115.34 (17)
C2—C3—N2110.13 (16)C14—C15—C16119.65 (17)
C2—C3—C4129.25 (18)O3—C16—C15120.43 (17)
N2—C3—C4120.61 (17)O3—C16—C17119.79 (18)
C3—C4—H4A109.5C15—C16—C17119.65 (18)
C3—C4—H4B109.5O4—C17—C18124.20 (18)
H4A—C4—H4B109.5O4—C17—C16115.18 (17)
C3—C4—H4C109.5C18—C17—C16120.62 (18)
H4A—C4—H4C109.5C17—C18—C13119.64 (18)
H4B—C4—H4C109.5C17—C18—H18120.2
N2—C5—H5A109.5C13—C18—H18120.2
N2—C5—H5B109.5O2—C19—H19A109.5
H5A—C5—H5B109.5O2—C19—H19B109.5
N2—C5—H5C109.5H19A—C19—H19B109.5
H5A—C5—H5C109.5O2—C19—H19C109.5
H5B—C5—H5C109.5H19A—C19—H19C109.5
C7—C6—C11120.3 (2)H19B—C19—H19C109.5
C7—C6—N1120.07 (19)O3—C20—H20A109.5
C11—C6—N1119.66 (18)O3—C20—H20B109.5
C6—C7—C8119.1 (2)H20A—C20—H20B109.5
C6—C7—H7120.4O3—C20—H20C109.5
C8—C7—H7120.4H20A—C20—H20C109.5
C9—C8—C7120.1 (2)H20B—C20—H20C109.5
C9—C8—H8120.0O4—C21—H21A109.5
C7—C8—H8120.0O4—C21—H21B109.5
C10—C9—C8120.2 (2)H21A—C21—H21B109.5
C10—C9—H9119.9O4—C21—H21C109.5
C8—C9—H9119.9H21A—C21—H21C109.5
C9—C10—C11120.5 (2)H21B—C21—H21C109.5
C1—N1—N2—C3−8.40 (19)C8—C9—C10—C110.9 (4)
C6—N1—N2—C3−152.94 (16)C9—C10—C11—C6−0.6 (4)
C1—N1—N2—C5−150.54 (16)C7—C6—C11—C10−0.8 (3)
C6—N1—N2—C564.9 (2)N1—C6—C11—C10179.61 (18)
N2—N1—C1—O1−170.55 (17)C2—N3—C12—C13−179.20 (16)
C6—N1—C1—O1−28.6 (3)N3—C12—C13—C14169.61 (17)
N2—N1—C1—C26.95 (19)N3—C12—C13—C18−7.8 (3)
C6—N1—C1—C2148.88 (17)C18—C13—C14—C150.3 (3)
C12—N3—C2—C3168.73 (17)C12—C13—C14—C15−177.09 (17)
C12—N3—C2—C1−17.2 (3)C19—O2—C15—C14−5.6 (3)
O1—C1—C2—C3174.1 (2)C19—O2—C15—C16173.74 (17)
N1—C1—C2—C3−3.0 (2)C13—C14—C15—O2178.25 (17)
O1—C1—C2—N3−0.6 (3)C13—C14—C15—C16−1.1 (3)
N1—C1—C2—N3−177.84 (17)C20—O3—C16—C1588.4 (2)
N3—C2—C3—N2173.05 (16)C20—O3—C16—C17−95.6 (2)
C1—C2—C3—N2−2.1 (2)O2—C15—C16—O3−2.1 (3)
N3—C2—C3—C4−6.2 (3)C14—C15—C16—O3177.30 (16)
C1—C2—C3—C4178.61 (18)O2—C15—C16—C17−178.04 (16)
N1—N2—C3—C26.4 (2)C14—C15—C16—C171.3 (3)
C5—N2—C3—C2144.21 (18)C21—O4—C17—C1814.1 (3)
N1—N2—C3—C4−174.22 (15)C21—O4—C17—C16−165.26 (17)
C5—N2—C3—C4−36.4 (3)O3—C16—C17—O42.5 (3)
C1—N1—C6—C786.2 (2)C15—C16—C17—O4178.47 (17)
N2—N1—C6—C7−134.48 (18)O3—C16—C17—C18−176.90 (16)
C1—N1—C6—C11−94.1 (2)C15—C16—C17—C18−0.9 (3)
N2—N1—C6—C1145.2 (2)O4—C17—C18—C13−179.14 (17)
C11—C6—C7—C81.8 (3)C16—C17—C18—C130.2 (3)
N1—C6—C7—C8−178.59 (18)C14—C13—C18—C170.1 (3)
C6—C7—C8—C9−1.5 (3)C12—C13—C18—C17177.48 (17)
C7—C8—C9—C100.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5C···O1i0.962.313.211 (2)155
C9—H9···O4ii0.932.563.346 (3)142

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5091).

References

  • Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem.49, 7242–7246. [PubMed]
  • Atwood, D. A. & Harvey, M. J. (2001). Chem. Rev.101, 37–52. [PubMed]
  • Che, C. M. & Huang, J. S. (2003). Coord. Chem. Rev.242, 97–113.
  • Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev.249, 3055–3074.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sun, Y.-F., Zhang, D.-D. & Song, H.-C. (2007). Chin. J. Struc. Chem.26, 511–514.
  • Yuan, M., Zhao, F., Zhang, W., Wang, Z. M. & Gao, S. (2007). Inorg. Chem.46, 11235–11242. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography