PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2103.
Published online 2010 July 24. doi:  10.1107/S1600536810024657
PMCID: PMC3007471

1-(3-Chloro-4-fluoro­phen­yl)-5-(2-diazo­acet­yl)-4-phenyl­pyrrolidin-2-one

Abstract

In the title compound, C18H13ClFN3O2, the pyrrolidine ring adopts an envelope conformation and the planar part is rotated by 4.3 (6)° from the plane of the benzene ring and is almost perperdicular both to the diazo­acetyl unit [dihedral angle = 78.93 (7)°] and the phenyl ring [dihedral angle = 86.07 (7)°]. In the crystal, mol­ecules are linked into a three-dimensional framework by C—H(...)O inter­actions. The mol­ecular conformation is stabilized by an intra­molecular C—H(...)O hydrogen bond.

Related literature

For synthetic methods, see: (Ray et al. 1994 [triangle], 1998 [triangle]). For bond-length data, see: Allen (2002 [triangle]). For related compound see: Ray et al. (2004 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For hydrogen bonding, see: Desiraju (2005 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2103-scheme1.jpg

Experimental

Crystal data

  • C18H13ClFN3O2
  • M r = 357.76
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2103-efi1.jpg
  • a = 10.3498 (3) Å
  • b = 9.2252 (3) Å
  • c = 17.1639 (5) Å
  • β = 91.088 (2)°
  • V = 1638.50 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 100 K
  • 0.42 × 0.38 × 0.21 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.901, T max = 0.952
  • 16359 measured reflections
  • 4084 independent reflections
  • 3597 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.123
  • S = 0.90
  • 4084 reflections
  • 278 parameters
  • All H-atom parameters refined
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2003 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLUTON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024657/bx2286sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024657/bx2286Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JKR thanks the Ministerio de Educación y Ciencia for funding a short sabbatical visit (SAB2006–0199) at the Universidade da Coruña. The authors wish to thank Dr Ana Isabel Balana Gracia (SAI-UDC technician) for her helpful comments and are indebted to the CESGA (Xunta de Galicia - Spain) for the use of the Cambridge Structural Database (CSD). Funds were provided by the Xunta de Galicia through project PGIDIT05TAM10301PR.

supplementary crystallographic information

Comment

A view of the molecule with numbering scheme is shown in Figure 1. In the title compounnd (I) , bond distances and angles are within normal ranges (Allen, 2002) .The atoms of the chain contaning the diazo group are planar [max deviation 0.339 (9)Å for N1].The pyrrolidin ring adopts an envelope conformation with puckering parameters q2 = 0.2816 (12) Å and [var phi]2 = 115.6 (2)°(Cremer & Pople, 1975). The 3-chloro-4-fluoro-benzene ring and the best plane of pyrrolidin ring defined by C10\N1\C9\C8 atoms are almost coplanar [4.20 (7)°]. The phenyl ring and the acetyl group O2/C10/C17/C18 fragment (r.m.s. deviation 0.023 Å) are almost perpendicular to plane defined by the N1/C8/C9/C10/C11/C12/C13/C14/C15/C16 atoms (r.m.s. deviation 0.038 Å) [87.07 (5); 88.46 (3)° respectively]. In the crystal molecules are linked by C—H···O interactions [C···O range 3.2320 (16)-3.3445 (19) Å; C—H···O range 136-157°] and these link the molecules into a three-dimensional framework. The molecular conformation is stabilized by one intramolecular C—H···O hydrogen bond (Table 1). As shown in Figure 2, carbonyl oxygen O2 interacts with three H atoms (C10—H10···O2, C16—H18···O2, and C18—H18···O2), which regarding crystal packing could be classified as supportive (Desiraju, 2005).

Experimental

The title compound was synthesized from the corresponding γ-lactam carboxylic acid which, in turn, was prepared following the general method (Ray et al. 1994, 1998) developed in our laboratory, through the reaction of its acid chloride with diazomethane. Single crystal was grown by dissolving the compound in mixture (n-hexane-ethylacetate) solvent and then by slow evaporation technique at room temperature. It is a yellow colour solid; m.p. 407–409 K (n-hexane-ethylacetate).

Refinement

Hydrogen atoms were found in subsequent difference Fourier maps and included in observed positions and refined as free isotropic atoms.

Figures

Fig. 1.
View of the title compound showing the atomic numbering and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
Fig. 2.
Part of the crystal structure showing carbonyl oxygen O2 interacts with three H atoms.

Crystal data

C18H13ClFN3O2F(000) = 736
Mr = 357.76Dx = 1.450 Mg m3
Monoclinic, P21/nMelting point: 408 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.3498 (3) ÅCell parameters from 7474 reflections
b = 9.2252 (3) Åθ = 2.5–28.3°
c = 17.1639 (5) ŵ = 0.26 mm1
β = 91.088 (2)°T = 100 K
V = 1638.50 (9) Å3Block, yellow
Z = 40.42 × 0.38 × 0.21 mm

Data collection

Bruker APEXII area-detector diffractometer4084 independent reflections
Radiation source: fine-focus sealed tube3597 reflections with I > 2σ(I)
graphiteRint = 0.021
phi and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −13→13
Tmin = 0.901, Tmax = 0.952k = −12→12
16359 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123All H-atom parameters refined
S = 0.90w = 1/[σ2(Fo2) + (0.1P)2 + 0.4639P] where P = (Fo2 + 2Fc2)/3
4084 reflections(Δ/σ)max = 0.001
278 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Experimental. Data was collected using a X8 APEX II BRUKER-Nonius diffractometer equipped with an KYROFLEX low-temperature apparatus operating at 100 K. A suitable crystal was chosen and mounted on Mitegen MicroMount (radiation-hard polymer).Data were measured using omega scans of 0.5° per frame for 10 s, such that a total of 1280 frames were collected in a optimized strategy and with a final resolution of 0.75 Å. Data integration and reduction was performed using the Apex2 (Bruker Nonius, 2005) suite software.Absorption corrections were applied using SADABS (2004) of the suite software.The structures are solved by the direct method using the SHELX97 program and refined by least squares method on F2 SHELXL97, incorporated in the Apex2 suite software.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.All non-hydrogen atoms were refined anisotropically. Hydrogen were found in subsequent difference Fourier maps and included in observed positions and refined as free isotropic atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.42826 (3)0.11958 (5)0.07084 (2)0.03671 (13)
F10.46336 (8)0.32525 (11)−0.05664 (5)0.0361 (2)
N10.88460 (9)0.29021 (10)0.14689 (5)0.0156 (2)
N20.67780 (10)0.24925 (13)0.39276 (6)0.0236 (2)
N30.63827 (13)0.30402 (17)0.44487 (7)0.0385 (3)
O11.02767 (10)0.45547 (12)0.09513 (6)0.0329 (2)
O20.80348 (9)0.41556 (9)0.28615 (5)0.0236 (2)
C11.07129 (10)0.04602 (13)0.21682 (6)0.0167 (2)
C21.04967 (11)−0.07912 (14)0.26035 (7)0.0200 (2)
H21.0083 (16)−0.0735 (18)0.3097 (10)0.025 (4)*
C31.08407 (12)−0.21444 (14)0.23217 (8)0.0230 (3)
H31.0708 (17)−0.2969 (19)0.2610 (10)0.031 (4)*
C41.14189 (12)−0.22676 (15)0.16014 (8)0.0260 (3)
H41.1586 (16)−0.320 (2)0.1404 (10)0.031 (4)*
C51.16535 (13)−0.10307 (16)0.11693 (8)0.0269 (3)
H51.2026 (18)−0.112 (2)0.0673 (11)0.040 (5)*
C61.13024 (12)0.03259 (14)0.14473 (7)0.0221 (3)
H61.1435 (15)0.1177 (18)0.1141 (10)0.023 (4)*
C71.01876 (10)0.18845 (13)0.24651 (6)0.0162 (2)
H71.0221 (15)0.1892 (17)0.3046 (9)0.022 (4)*
C81.08093 (12)0.32552 (14)0.21426 (7)0.0207 (2)
H8A1.1684 (17)0.3136 (19)0.2006 (10)0.028 (4)*
H8B1.0804 (16)0.4057 (18)0.2524 (10)0.025 (4)*
C90.99853 (12)0.36796 (13)0.14439 (7)0.0202 (2)
C100.87542 (10)0.20363 (12)0.21788 (6)0.0138 (2)
H100.8420 (14)0.1091 (15)0.2073 (8)0.010 (3)*
C110.77808 (11)0.30129 (12)0.09402 (6)0.0157 (2)
C120.78022 (12)0.39482 (13)0.02979 (7)0.0199 (2)
H120.8530 (15)0.4502 (17)0.0199 (8)0.016 (3)*
C130.67333 (13)0.40285 (15)−0.02029 (7)0.0244 (3)
H130.6734 (18)0.477 (2)−0.0662 (11)0.037 (5)*
C140.56682 (12)0.31791 (16)−0.00738 (7)0.0248 (3)
C150.56378 (11)0.22465 (15)0.05545 (7)0.0223 (3)
C160.66909 (11)0.21630 (14)0.10649 (7)0.0190 (2)
H160.6620 (16)0.1485 (19)0.1490 (10)0.029 (4)*
C170.79785 (10)0.28288 (12)0.27989 (6)0.0161 (2)
C180.72863 (11)0.18918 (14)0.33019 (6)0.0185 (2)
H180.7186 (17)0.088 (2)0.3236 (10)0.034 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01855 (18)0.0601 (3)0.0313 (2)−0.01115 (14)−0.00341 (13)−0.00666 (15)
F10.0259 (4)0.0618 (6)0.0201 (4)0.0150 (4)−0.0103 (3)−0.0053 (4)
N10.0156 (4)0.0170 (5)0.0141 (4)−0.0034 (3)−0.0011 (3)0.0027 (3)
N20.0196 (5)0.0311 (6)0.0202 (5)0.0038 (4)0.0024 (4)0.0001 (4)
N30.0342 (7)0.0559 (9)0.0257 (6)0.0084 (6)0.0064 (5)−0.0094 (5)
O10.0330 (5)0.0366 (6)0.0290 (5)−0.0187 (4)−0.0038 (4)0.0127 (4)
O20.0291 (5)0.0154 (4)0.0264 (4)0.0025 (3)0.0014 (3)−0.0023 (3)
C10.0117 (5)0.0201 (6)0.0183 (5)0.0002 (4)−0.0008 (4)−0.0009 (4)
C20.0164 (5)0.0229 (6)0.0206 (5)0.0019 (4)0.0003 (4)0.0020 (4)
C30.0193 (5)0.0196 (6)0.0300 (6)0.0008 (4)−0.0007 (5)0.0021 (5)
C40.0197 (6)0.0239 (6)0.0345 (7)0.0013 (5)0.0022 (5)−0.0081 (5)
C50.0222 (6)0.0320 (7)0.0267 (6)−0.0004 (5)0.0082 (5)−0.0066 (5)
C60.0188 (5)0.0251 (6)0.0228 (5)−0.0019 (4)0.0054 (4)0.0001 (5)
C70.0139 (5)0.0189 (5)0.0156 (5)−0.0003 (4)−0.0013 (4)0.0002 (4)
C80.0166 (5)0.0213 (6)0.0241 (6)−0.0049 (4)−0.0038 (4)0.0008 (4)
C90.0198 (5)0.0201 (6)0.0205 (5)−0.0065 (4)−0.0010 (4)−0.0001 (4)
C100.0139 (5)0.0137 (5)0.0139 (5)−0.0005 (4)0.0002 (4)0.0015 (4)
C110.0166 (5)0.0165 (5)0.0140 (5)0.0015 (4)−0.0010 (4)−0.0017 (4)
C120.0243 (6)0.0195 (6)0.0158 (5)0.0031 (4)0.0012 (4)0.0006 (4)
C130.0299 (6)0.0278 (7)0.0153 (5)0.0110 (5)−0.0011 (4)0.0009 (4)
C140.0208 (6)0.0377 (7)0.0158 (5)0.0118 (5)−0.0048 (4)−0.0069 (5)
C150.0157 (5)0.0324 (7)0.0186 (5)0.0004 (5)−0.0007 (4)−0.0059 (5)
C160.0168 (5)0.0238 (6)0.0162 (5)−0.0012 (4)−0.0006 (4)−0.0014 (4)
C170.0149 (5)0.0171 (5)0.0161 (5)0.0028 (4)−0.0024 (4)0.0002 (4)
C180.0186 (5)0.0203 (6)0.0168 (5)0.0027 (4)0.0033 (4)0.0001 (4)

Geometric parameters (Å, °)

Cl1—C151.7294 (13)C6—H60.956 (16)
F1—C141.3534 (13)C7—C81.5275 (16)
N1—C91.3815 (14)C7—C101.5602 (15)
N1—C111.4182 (13)C7—H70.996 (16)
N1—C101.4616 (13)C8—C91.5098 (16)
N2—N31.1120 (16)C8—H8A0.946 (17)
N2—C181.3262 (15)C8—H8B0.988 (16)
O1—C91.2114 (15)C10—C171.5311 (15)
O2—C171.2300 (14)C10—H100.954 (14)
C1—C21.3954 (16)C11—C161.3937 (16)
C1—C61.3955 (15)C11—C121.4005 (15)
C1—C71.5140 (16)C12—C131.3899 (17)
C2—C31.3877 (17)C12—H120.929 (15)
C2—H20.959 (17)C13—C141.374 (2)
C3—C41.3884 (18)C13—H131.047 (19)
C3—H30.919 (18)C14—C151.3803 (19)
C4—C51.385 (2)C15—C161.3874 (15)
C4—H40.941 (18)C16—H160.964 (17)
C5—C61.3901 (18)C17—C181.4245 (16)
C5—H50.945 (19)C18—H180.944 (19)
C9—N1—C11126.61 (9)O1—C9—N1126.27 (11)
C9—N1—C10112.25 (9)O1—C9—C8125.65 (11)
C11—N1—C10120.71 (9)N1—C9—C8108.08 (10)
N3—N2—C18177.31 (15)N1—C10—C17111.22 (9)
C2—C1—C6118.59 (11)N1—C10—C7103.60 (8)
C2—C1—C7118.39 (10)C17—C10—C7109.39 (8)
C6—C1—C7122.78 (11)N1—C10—H10111.7 (8)
C3—C2—C1120.85 (11)C17—C10—H10112.0 (8)
C3—C2—H2118.6 (10)C7—C10—H10108.5 (8)
C1—C2—H2120.5 (10)C16—C11—C12119.50 (11)
C2—C3—C4120.12 (12)C16—C11—N1118.87 (10)
C2—C3—H3121.0 (11)C12—C11—N1121.63 (10)
C4—C3—H3118.9 (11)C13—C12—C11119.69 (12)
C5—C4—C3119.49 (12)C13—C12—H12119.8 (9)
C5—C4—H4121.6 (11)C11—C12—H12120.5 (9)
C3—C4—H4118.8 (11)C14—C13—C12120.10 (11)
C4—C5—C6120.55 (12)C14—C13—H13120.6 (10)
C4—C5—H5119.6 (12)C12—C13—H13119.3 (10)
C6—C5—H5119.8 (12)F1—C14—C13119.90 (12)
C5—C6—C1120.39 (12)F1—C14—C15119.32 (12)
C5—C6—H6120.6 (10)C13—C14—C15120.78 (11)
C1—C6—H6118.9 (10)C14—C15—C16119.91 (12)
C1—C7—C8116.10 (10)C14—C15—Cl1119.95 (9)
C1—C7—C10108.50 (9)C16—C15—Cl1120.14 (10)
C8—C7—C10102.48 (9)C15—C16—C11120.01 (11)
C1—C7—H7109.7 (9)C15—C16—H16116.3 (10)
C8—C7—H7110.5 (9)C11—C16—H16123.7 (10)
C10—C7—H7109.2 (9)O2—C17—C18125.07 (11)
C9—C8—C7105.49 (9)O2—C17—C10120.74 (10)
C9—C8—H8A111.2 (10)C18—C17—C10114.08 (10)
C7—C8—H8A113.9 (11)N2—C18—C17116.68 (11)
C9—C8—H8B108.8 (10)N2—C18—H18117.7 (11)
C7—C8—H8B111.8 (10)C17—C18—H18125.6 (11)
H8A—C8—H8B105.6 (15)
C6—C1—C2—C3−1.00 (17)C1—C7—C10—C17145.75 (9)
C7—C1—C2—C3173.48 (10)C8—C7—C10—C17−90.94 (10)
C1—C2—C3—C40.59 (18)C9—N1—C11—C16−178.55 (11)
C2—C3—C4—C50.27 (19)C10—N1—C11—C16−6.68 (16)
C3—C4—C5—C6−0.7 (2)C9—N1—C11—C121.68 (17)
C4—C5—C6—C10.28 (19)C10—N1—C11—C12173.55 (10)
C2—C1—C6—C50.56 (17)C16—C11—C12—C130.61 (17)
C7—C1—C6—C5−173.66 (11)N1—C11—C12—C13−179.62 (10)
C2—C1—C7—C8160.07 (10)C11—C12—C13—C14−0.89 (18)
C6—C1—C7—C8−25.70 (15)C12—C13—C14—F1−179.48 (11)
C2—C1—C7—C10−85.24 (12)C12—C13—C14—C150.51 (19)
C6—C1—C7—C1088.99 (12)F1—C14—C15—C16−179.86 (11)
C1—C7—C8—C992.73 (11)C13—C14—C15—C160.15 (19)
C10—C7—C8—C9−25.32 (12)F1—C14—C15—Cl1−0.39 (17)
C11—N1—C9—O1−2.4 (2)C13—C14—C15—Cl1179.62 (10)
C10—N1—C9—O1−174.83 (13)C14—C15—C16—C11−0.42 (18)
C11—N1—C9—C8177.36 (10)Cl1—C15—C16—C11−179.89 (9)
C10—N1—C9—C84.91 (13)C12—C11—C16—C150.04 (18)
C7—C8—C9—O1−166.45 (13)N1—C11—C16—C15−179.74 (10)
C7—C8—C9—N113.82 (13)N1—C10—C17—O2−34.57 (13)
C9—N1—C10—C1796.37 (11)C7—C10—C17—O279.26 (12)
C11—N1—C10—C17−76.58 (12)N1—C10—C17—C18149.15 (9)
C9—N1—C10—C7−21.03 (12)C7—C10—C17—C18−97.02 (11)
C11—N1—C10—C7166.01 (9)O2—C17—C18—N2−7.17 (17)
C1—C7—C10—N1−95.58 (10)C10—C17—C18—N2168.93 (10)
C8—C7—C10—N127.74 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.946 (18)2.589 (18)3.3445 (19)137.1 (14)
C10—H10···O2ii0.955 (16)2.340 (16)3.2393 (15)156.8 (13)
C12—H12···O10.922 (17)2.211 (16)2.8328 (17)124.1 (13)
C12—H12···O1iii0.922 (17)2.505 (16)3.2586 (17)139.1 (13)
C16—H16···O2ii0.946 (18)2.460 (18)3.3403 (16)154.9 (15)
C18—H18···O2ii0.944 (18)2.482 (19)3.2320 (16)136.4 (15)

Symmetry codes: (i) x, y−1, z; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2286).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Bruker (2003). SAINT, SADABS and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Desiraju, G. M. (2005). Chem. Commun. pp. 2995–3001. [PubMed]
  • Ray, J. K., Haldar, P., Canle L., M., Santaballa, J. A. & Mahía, J. (2004). Acta Cryst. C60, o163–o165. [PubMed]
  • Ray, J. K., Kar, G. K., Roy, B. C., Adhikari, S. D. & Brahma, N. K. (1998). Bioorg. Med. Chem.6, 2397–2403. [PubMed]
  • Ray, J. K., Kar, G. K., Roy, B. C. & Brahma, N. K. (1994). Bioorg. Med. Chem.2, 1417–1421. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography