PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m1016–m1017.
Published online 2010 July 24. doi:  10.1107/S1600536810028977
PMCID: PMC3007465

Hexaaqua­nickel(II) tetra­aqua­bis­(μ-pyridine-2,6-dicarboxyl­ato)bis­(pyridine-2,6-dicarboxyl­ato)trinickelate(II) octa­hydrate

Abstract

The title compound, [Ni(H2O)6][Ni3(C7H3NO4)4(H2O)4]·8H2O, was obtained by the reaction of nickel(II) nitrate hexa­hydrate with pyridine-2,6-dicarb­oxy­lic acid (pydcH2) and 1,10-phenanothroline (phen) in an aqueous solution. The latter ligand is not involved in formation of the title complex. There are three different NiII atoms in the asymmetric unit, two of which are located on inversion centers, and thus the [Ni(H2O)6]2+ cation and the trinuclear {[Ni(pydc)2]2-μ-Ni(H2O)4}2− anion are centrosymmetric. All NiII atoms exhibit an octa­hedral coordination geometry. Various inter­actions, including numerous O—H(...)O and C—H(...)O hydrogen bonds and C—O(...)π stacking of the pyridine and carboxyl­ate groups [3.570 (1), 3.758 (1) and 3.609 (1) Å], are observed in the crystal structure.

Related literature

For metal complexes formed by pyridine­dicarb­oxy­lic acids, see: Aghabozorg et al. (2008 [triangle]); Çolak et al. (2008 [triangle]); Moghimi et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1016-scheme1.jpg

Experimental

Crystal data

  • [Ni(H2O)6][Ni3(C7H3NO4)4(H2O)4]·8H2O
  • M r = 1219.54
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1016-efi7.jpg
  • a = 20.4561 (5) Å
  • b = 12.7587 (3) Å
  • c = 8.8582 (2) Å
  • β = 96.942 (1)°
  • V = 2294.98 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.73 mm−1
  • T = 100 K
  • 0.35 × 0.13 × 0.07 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.760, T max = 0.888
  • 27378 measured reflections
  • 6068 independent reflections
  • 4899 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.064
  • S = 1.00
  • 6068 reflections
  • 319 parameters
  • H-atom parameters constrained
  • Δρmax = 0.83 e Å−3
  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810028977/gk2279sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028977/gk2279Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Islamic Azad University, Qom Branch, for financial support of this work.

supplementary crystallographic information

Comment

Pyridinedicarboxylic acid and 1,10-phenanthroline are well known ligands in coordination chemistry (Çolak et al., 2008). In our group, many compounds are synthesized by proton transfer between the two compounds (phenH)2(pydc) (Moghimi et al., 2005). Also, many metallic compounds have been reported (Aghabozorg et al., 2008).

The considerable case in the title compound is that despite of the presence of phen in the preparation solution, only pydc is involved in the complex formation. In the crystal structure, the Ni atom is in three types. In the anionic part, Ni1 is coordinated by two (pydc)2– groups, and Ni2 is coordinated by four water molecules and two uncoordinated O atoms of two (pydc)2– groups linked to Ni1. As shown in Fig.1, this causes that Ni2 makes a bridge between Ni1 and Ni1A. In the cationic part, Ni3 is simply coordinated by six water molecules.

As given in Table 1 and Figs. 2–3, there are nomerous hydrogen bonds of the type O—H···O between water molecules and O atoms of (pydc)2–, and C—H···O between C atoms of pyridine rings and water molecules. Also, C—O···π stackings present in the crystal structure, are as follows: C6—O2···Cg1(N1/C1—C5), 3.570 (1) Å, C14—O8···Cg2 (N2/C8—C12), 3.758 (1) Å, and C7—O4···Cg1(N1/C1—C5), 3.609 (1) Å.

Experimental

To an aqueous solution of Ni(NO3)2.6H2O (143 mg, 0.5 mmol), an aqueous solution of pydcH2 (167 mg, 1 mmol) and phen (198 mg, 1 mmol) in 1:2:2 molar ratio was added. The final volume was 40 ml. After less than 1 h stirring and heating, the obtained clear solution was left for 2 weeks. Then emerald green crystals were settled in the solution which were suitable for X-ray crystallography.

Refinement

The H atoms of the water molecules were found in difference Fourier maps and the O-H bond lengths were constrained to 0.85 Å. The H atoms from C-H groups were placed in calculated positions. All H atoms were refined in riding model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.
View of the title compound with displacement ellipsoids at the 50 % probability level. Symmetry codes to generate equivalent atoms: #a -x, -y+1, -z+1; #b -x+1,-y+1,-z.
Fig. 2.
Hydrogen bonding pattern. Hydrogen bonds are shown with dashed lines.Symmetry transformations used to generate equivalent atoms: #A x, -y + 3/2; z + 1/2; #B x, y, z + 1; #C x, y, z - 1; #D x, -y + 1/2, z - 1/2; #E -x, -y + 1, -z; #F x, -y + 3/2, z - 1/2. ...
Fig. 3.
Crystal packing fragment along the b crystal axis. Hydrogen bonds are shown with dashed lines. Only H atoms that take part in hydrogen bonding are depicted for clarity.

Crystal data

[Ni(H2O)6][Ni3(C7H3NO4)4(H2O)4]·8H2OF(000) = 1256
Mr = 1219.54Dx = 1.765 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8450 reflections
a = 20.4561 (5) Åθ = 2.6–33.9°
b = 12.7587 (3) ŵ = 1.73 mm1
c = 8.8582 (2) ÅT = 100 K
β = 96.942 (1)°Prism, green
V = 2294.98 (9) Å30.35 × 0.13 × 0.07 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer6068 independent reflections
Radiation source: fine-focus sealed tube4899 reflections with I > 2σ(I)
graphiteRint = 0.062
ω scansθmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −27→27
Tmin = 0.760, Tmax = 0.888k = −17→17
27378 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.064H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.025P)2] where P = (Fo2 + 2Fc2)/3
6068 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = −0.62 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.231007 (11)0.520201 (16)0.27476 (3)0.00945 (6)
Ni20.00000.50000.50000.00895 (7)
Ni30.50000.50000.00000.01050 (7)
O10.30490 (6)0.51969 (9)0.46564 (14)0.0142 (3)
O20.38195 (6)0.62577 (10)0.58535 (14)0.0168 (3)
O30.16507 (6)0.58836 (9)0.09653 (14)0.0136 (3)
O40.12370 (6)0.74544 (9)0.02196 (14)0.0152 (3)
O50.14709 (6)0.51140 (9)0.39541 (14)0.0131 (3)
O60.06993 (6)0.39623 (9)0.44857 (14)0.0124 (3)
O70.30351 (6)0.46255 (9)0.14135 (14)0.0130 (3)
O80.33719 (6)0.31334 (9)0.04162 (14)0.0159 (3)
N10.25177 (7)0.66974 (11)0.29750 (16)0.0100 (3)
N20.20957 (7)0.37003 (10)0.26000 (16)0.0095 (3)
C10.29991 (8)0.69995 (13)0.40384 (19)0.0111 (3)
C20.31588 (9)0.80472 (14)0.4262 (2)0.0145 (4)
H2A0.35070.82580.50080.017*
C30.27913 (9)0.87836 (13)0.3356 (2)0.0147 (4)
H3A0.28870.95090.34850.018*
C40.22850 (9)0.84595 (13)0.2262 (2)0.0130 (4)
H4A0.20300.89540.16430.016*
C50.21645 (8)0.73898 (13)0.21023 (19)0.0101 (3)
C60.33232 (8)0.60828 (14)0.4934 (2)0.0124 (3)
C70.16388 (8)0.68773 (13)0.09888 (19)0.0111 (3)
C80.15876 (8)0.33432 (13)0.32572 (19)0.0102 (3)
C90.14264 (9)0.22888 (13)0.3229 (2)0.0132 (4)
H9A0.10620.20380.36940.016*
C100.18182 (9)0.16074 (13)0.2493 (2)0.0141 (4)
H10A0.17250.08780.24670.017*
C110.23432 (8)0.19915 (13)0.1799 (2)0.0130 (4)
H11A0.26090.15330.12880.016*
C120.24700 (8)0.30604 (13)0.18706 (19)0.0102 (3)
C130.12210 (8)0.42038 (13)0.39702 (19)0.0108 (3)
C140.30067 (8)0.36433 (13)0.11794 (19)0.0112 (3)
O1W0.01802 (6)0.59383 (9)0.31474 (14)0.0138 (3)
H10.05980.59560.31920.021*
H20.00990.65860.32470.021*
O2W0.06619 (6)0.58178 (9)0.64628 (14)0.0132 (3)
H30.08940.62820.60900.020*
H40.04930.61610.71400.020*
O3W0.43024 (6)0.56054 (9)0.13011 (14)0.0146 (3)
H50.39470.52690.13460.022*
H60.44390.59490.20990.022*
O4W0.47679 (6)0.61160 (9)−0.16482 (14)0.0161 (3)
H70.44180.6029−0.22570.024*
H80.47380.6773−0.15110.024*
O5W0.43241 (6)0.39907 (10)−0.10299 (14)0.0191 (3)
H90.40060.3750−0.05990.029*
H100.42150.3998−0.19870.029*
O6W0.00996 (6)0.69298 (10)−0.14073 (14)0.0161 (3)
H110.04630.6959−0.08320.024*
H12−0.01690.6531−0.10240.024*
O7W0.39596 (6)0.12448 (9)0.09304 (14)0.0155 (3)
H130.37640.18190.06900.023*
H140.37370.07070.06220.023*
O8W0.06730 (6)0.44404 (10)−0.00502 (15)0.0195 (3)
H150.04220.4701−0.07910.029*
H160.09670.49130.01030.029*
O9W0.47481 (6)0.82603 (10)−0.10844 (14)0.0179 (3)
H170.51570.8380−0.08640.027*
H180.45640.8473−0.03300.027*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.01011 (11)0.00744 (10)0.01080 (11)−0.00024 (8)0.00129 (8)−0.00014 (8)
Ni20.00992 (15)0.00820 (15)0.00908 (15)−0.00061 (11)0.00256 (12)−0.00069 (11)
Ni30.01054 (15)0.01220 (16)0.00858 (15)−0.00051 (12)0.00045 (12)0.00130 (12)
O10.0152 (6)0.0122 (6)0.0146 (6)0.0005 (5)−0.0003 (5)0.0015 (5)
O20.0147 (6)0.0218 (7)0.0128 (6)−0.0014 (5)−0.0025 (5)0.0018 (5)
O30.0146 (6)0.0090 (6)0.0166 (7)0.0002 (5)−0.0012 (5)−0.0017 (5)
O40.0155 (6)0.0123 (6)0.0164 (7)0.0028 (5)−0.0035 (5)0.0008 (5)
O50.0130 (6)0.0095 (6)0.0175 (6)−0.0009 (5)0.0051 (5)−0.0022 (5)
O60.0121 (6)0.0111 (6)0.0145 (6)−0.0003 (5)0.0035 (5)−0.0005 (5)
O70.0152 (6)0.0094 (6)0.0148 (6)−0.0010 (5)0.0038 (5)0.0011 (5)
O80.0177 (6)0.0133 (6)0.0185 (7)0.0018 (5)0.0098 (6)−0.0004 (5)
N10.0103 (7)0.0098 (7)0.0103 (7)−0.0004 (5)0.0022 (6)−0.0008 (5)
N20.0103 (7)0.0087 (7)0.0092 (7)−0.0001 (5)−0.0004 (6)0.0000 (5)
C10.0112 (8)0.0130 (8)0.0096 (8)−0.0011 (6)0.0023 (7)−0.0004 (6)
C20.0151 (9)0.0157 (9)0.0125 (9)−0.0038 (7)0.0013 (7)−0.0024 (7)
C30.0184 (9)0.0084 (8)0.0177 (9)−0.0027 (7)0.0041 (8)−0.0029 (7)
C40.0153 (9)0.0113 (8)0.0132 (9)0.0013 (7)0.0047 (7)0.0013 (7)
C50.0096 (8)0.0107 (8)0.0104 (8)0.0003 (6)0.0031 (7)0.0003 (6)
C60.0116 (8)0.0162 (9)0.0101 (8)0.0005 (7)0.0045 (7)0.0012 (7)
C70.0117 (8)0.0120 (8)0.0102 (8)−0.0004 (7)0.0042 (7)−0.0008 (6)
C80.0096 (8)0.0114 (8)0.0096 (8)0.0005 (6)0.0014 (7)0.0001 (6)
C90.0139 (9)0.0116 (8)0.0145 (9)−0.0014 (7)0.0037 (7)0.0000 (7)
C100.0182 (9)0.0081 (8)0.0162 (9)−0.0006 (7)0.0026 (7)−0.0013 (7)
C110.0143 (9)0.0109 (8)0.0141 (9)0.0026 (7)0.0021 (7)−0.0013 (7)
C120.0098 (8)0.0122 (8)0.0084 (8)−0.0004 (6)0.0005 (6)0.0004 (6)
C130.0115 (8)0.0116 (8)0.0087 (8)0.0011 (6)−0.0007 (7)−0.0007 (6)
C140.0113 (8)0.0134 (8)0.0087 (8)0.0005 (7)0.0008 (7)0.0020 (6)
O1W0.0148 (6)0.0107 (6)0.0165 (6)−0.0003 (5)0.0043 (5)0.0015 (5)
O2W0.0148 (6)0.0121 (6)0.0136 (6)−0.0033 (5)0.0050 (5)−0.0021 (5)
O3W0.0131 (6)0.0161 (6)0.0144 (6)−0.0019 (5)0.0011 (5)−0.0013 (5)
O4W0.0197 (7)0.0149 (6)0.0124 (6)0.0005 (5)−0.0029 (5)0.0033 (5)
O5W0.0198 (7)0.0267 (7)0.0110 (6)−0.0101 (6)0.0033 (5)−0.0017 (5)
O6W0.0154 (6)0.0170 (6)0.0155 (7)−0.0023 (5)0.0002 (5)−0.0024 (5)
O7W0.0160 (6)0.0114 (6)0.0183 (7)−0.0004 (5)−0.0008 (5)−0.0009 (5)
O8W0.0191 (7)0.0159 (6)0.0228 (7)−0.0042 (5)−0.0005 (6)−0.0017 (5)
O9W0.0145 (6)0.0222 (7)0.0173 (7)0.0009 (5)0.0028 (5)0.0011 (5)

Geometric parameters (Å, °)

Ni1—N11.9598 (14)C4—C51.391 (2)
Ni1—N21.9663 (14)C4—H4A0.9500
Ni1—O12.1275 (12)C5—C71.517 (2)
Ni1—O52.1319 (12)C8—C91.385 (2)
Ni1—O32.1338 (12)C8—C131.510 (2)
Ni1—O72.1357 (13)C9—C101.396 (2)
Ni2—O62.0407 (12)C9—H9A0.9500
Ni2—O2W2.0438 (12)C10—C111.390 (2)
Ni2—O1W2.0996 (12)C10—H10A0.9500
Ni3—O5W2.0242 (12)C11—C121.388 (2)
Ni3—O4W2.0535 (12)C11—H11A0.9500
Ni3—O3W2.0879 (12)C12—C141.515 (2)
O1—C61.273 (2)O1W—H10.8500
O2—C61.243 (2)O1W—H20.8499
O3—C71.268 (2)O2W—H30.8500
O4—C71.244 (2)O2W—H40.8499
O5—C131.270 (2)O3W—H50.8498
O6—C131.249 (2)O3W—H60.8500
O7—C141.270 (2)O4W—H70.8500
O8—C141.249 (2)O4W—H80.8500
N1—C51.329 (2)O5W—H90.8499
N1—C11.335 (2)O5W—H100.8500
N2—C81.332 (2)O6W—H110.8500
N2—C121.338 (2)O6W—H120.8500
C1—C21.385 (2)O7W—H130.8499
C1—C61.520 (2)O7W—H140.8501
C2—C31.395 (2)O8W—H150.8500
C2—H2A0.9500O8W—H160.8499
C3—C41.393 (2)O9W—H170.8501
C3—H3A0.9500O9W—H180.8500
N1—Ni1—N2177.85 (6)C1—C2—C3117.79 (16)
N1—Ni1—O178.28 (5)C1—C2—H2A121.1
N2—Ni1—O1100.44 (5)C3—C2—H2A121.1
N1—Ni1—O5100.22 (5)C4—C3—C2120.27 (16)
N2—Ni1—O578.19 (5)C4—C3—H3A119.9
O1—Ni1—O598.00 (5)C2—C3—H3A119.9
N1—Ni1—O377.82 (5)C5—C4—C3118.01 (16)
N2—Ni1—O3103.41 (5)C5—C4—H4A121.0
O1—Ni1—O3156.09 (5)C3—C4—H4A121.0
O5—Ni1—O385.25 (5)N1—C5—C4121.07 (15)
N1—Ni1—O7103.64 (5)N1—C5—C7112.62 (14)
N2—Ni1—O777.99 (5)C4—C5—C7126.30 (15)
O1—Ni1—O787.97 (5)O2—C6—O1126.32 (16)
O5—Ni1—O7156.12 (5)O2—C6—C1118.31 (15)
O3—Ni1—O798.63 (5)O1—C6—C1115.37 (15)
O6—Ni2—O6i180.0O4—C7—O3126.56 (16)
O6—Ni2—O2W92.53 (5)O4—C7—C5118.08 (15)
O6i—Ni2—O2W87.47 (5)O3—C7—C5115.35 (14)
O6—Ni2—O2Wi87.47 (5)N2—C8—C9121.43 (16)
O6i—Ni2—O2Wi92.53 (5)N2—C8—C13112.79 (14)
O2W—Ni2—O2Wi180.00 (5)C9—C8—C13125.77 (16)
O6—Ni2—O1Wi89.92 (5)C8—C9—C10117.68 (16)
O6i—Ni2—O1Wi90.08 (5)C8—C9—H9A121.2
O2W—Ni2—O1Wi87.76 (5)C10—C9—H9A121.2
O2Wi—Ni2—O1Wi92.24 (5)C11—C10—C9120.33 (16)
O6—Ni2—O1W90.08 (5)C11—C10—H10A119.8
O6i—Ni2—O1W89.92 (5)C9—C10—H10A119.8
O2W—Ni2—O1W92.24 (5)C12—C11—C10118.45 (16)
O2Wi—Ni2—O1W87.76 (5)C12—C11—H11A120.8
O1Wi—Ni2—O1W180.0C10—C11—H11A120.8
O5W—Ni3—O5Wii180.00 (6)N2—C12—C11120.45 (16)
O5W—Ni3—O4Wii88.05 (5)N2—C12—C14112.37 (14)
O5Wii—Ni3—O4Wii91.95 (5)C11—C12—C14127.18 (15)
O5W—Ni3—O4W91.95 (5)O6—C13—O5126.35 (16)
O5Wii—Ni3—O4W88.05 (5)O6—C13—C8117.58 (15)
O4Wii—Ni3—O4W180.00 (5)O5—C13—C8116.05 (15)
O5W—Ni3—O3W90.51 (5)O8—C14—O7125.70 (16)
O5Wii—Ni3—O3W89.49 (5)O8—C14—C12118.23 (15)
O4Wii—Ni3—O3W88.78 (5)O7—C14—C12116.06 (15)
O4W—Ni3—O3W91.22 (5)Ni2—O1W—H1104.4
O5W—Ni3—O3Wii89.49 (5)Ni2—O1W—H2114.8
O5Wii—Ni3—O3Wii90.51 (5)H1—O1W—H2100.1
O4Wii—Ni3—O3Wii91.22 (5)Ni2—O2W—H3117.9
O4W—Ni3—O3Wii88.78 (5)Ni2—O2W—H4114.6
O3W—Ni3—O3Wii180.0H3—O2W—H4102.0
C6—O1—Ni1113.90 (11)Ni3—O3W—H5119.0
C7—O3—Ni1114.02 (10)Ni3—O3W—H6118.1
C13—O5—Ni1113.80 (11)H5—O3W—H6114.8
C13—O6—Ni2125.07 (11)Ni3—O4W—H7117.7
C14—O7—Ni1114.14 (11)Ni3—O4W—H8126.6
C5—N1—C1121.44 (15)H7—O4W—H898.6
C5—N1—Ni1119.45 (11)Ni3—O5W—H9123.0
C1—N1—Ni1119.08 (11)Ni3—O5W—H10121.7
C8—N2—C12121.66 (14)H9—O5W—H10109.2
C8—N2—Ni1118.94 (11)H11—O6W—H12110.4
C12—N2—Ni1119.38 (11)H13—O7W—H14113.4
N1—C1—C2121.41 (16)H15—O8W—H16101.3
N1—C1—C6112.60 (14)H17—O9W—H18106.2
C2—C1—C6125.99 (16)
N1—Ni1—O1—C6−7.59 (12)C2—C3—C4—C5−0.4 (3)
N2—Ni1—O1—C6174.17 (12)C1—N1—C5—C40.2 (3)
O5—Ni1—O1—C6−106.44 (12)Ni1—N1—C5—C4178.12 (13)
O3—Ni1—O1—C6−10.1 (2)C1—N1—C5—C7−179.19 (14)
O7—Ni1—O1—C696.78 (12)Ni1—N1—C5—C7−1.30 (19)
N1—Ni1—O3—C7−7.77 (12)C3—C4—C5—N10.5 (3)
N2—Ni1—O3—C7170.42 (12)C3—C4—C5—C7179.86 (16)
O1—Ni1—O3—C7−5.3 (2)Ni1—O1—C6—O2−170.33 (14)
O5—Ni1—O3—C793.77 (12)Ni1—O1—C6—C19.82 (19)
O7—Ni1—O3—C7−109.96 (12)N1—C1—C6—O2173.09 (15)
N1—Ni1—O5—C13179.05 (11)C2—C1—C6—O2−7.7 (3)
N2—Ni1—O5—C13−2.43 (11)N1—C1—C6—O1−7.0 (2)
O1—Ni1—O5—C13−101.49 (11)C2—C1—C6—O1172.18 (17)
O3—Ni1—O5—C13102.36 (11)Ni1—O3—C7—O4−169.34 (14)
O7—Ni1—O5—C131.74 (19)Ni1—O3—C7—C59.26 (18)
O2W—Ni2—O6—C13−56.66 (13)N1—C5—C7—O4173.03 (15)
O2Wi—Ni2—O6—C13123.34 (13)C4—C5—C7—O4−6.4 (3)
O1Wi—Ni2—O6—C13−144.42 (13)N1—C5—C7—O3−5.7 (2)
O1W—Ni2—O6—C1335.58 (13)C4—C5—C7—O3174.92 (17)
N1—Ni1—O7—C14177.23 (11)C12—N2—C8—C90.6 (2)
N2—Ni1—O7—C14−1.32 (11)Ni1—N2—C8—C9−178.02 (13)
O1—Ni1—O7—C1499.80 (12)C12—N2—C8—C13−178.15 (14)
O5—Ni1—O7—C14−5.49 (19)Ni1—N2—C8—C133.20 (18)
O3—Ni1—O7—C14−103.30 (11)N2—C8—C9—C100.4 (3)
O1—Ni1—N1—C5−174.37 (14)C13—C8—C9—C10178.99 (16)
O5—Ni1—N1—C5−78.23 (13)C8—C9—C10—C11−1.0 (3)
O3—Ni1—N1—C54.59 (12)C9—C10—C11—C120.6 (3)
O7—Ni1—N1—C5100.65 (13)C8—N2—C12—C11−1.0 (2)
O1—Ni1—N1—C13.57 (12)Ni1—N2—C12—C11177.63 (12)
O5—Ni1—N1—C199.72 (13)C8—N2—C12—C14178.50 (14)
O3—Ni1—N1—C1−177.47 (13)Ni1—N2—C12—C14−2.85 (18)
O7—Ni1—N1—C1−81.40 (13)C10—C11—C12—N20.4 (3)
O1—Ni1—N2—C895.39 (12)C10—C11—C12—C14−179.07 (16)
O5—Ni1—N2—C8−0.69 (12)Ni2—O6—C13—O514.8 (2)
O3—Ni1—N2—C8−82.83 (12)Ni2—O6—C13—C8−163.58 (11)
O7—Ni1—N2—C8−178.97 (13)Ni1—O5—C13—O6−173.65 (13)
O1—Ni1—N2—C12−83.29 (13)Ni1—O5—C13—C84.74 (18)
O5—Ni1—N2—C12−179.38 (13)N2—C8—C13—O6173.22 (14)
O3—Ni1—N2—C1298.49 (13)C9—C8—C13—O6−5.5 (3)
O7—Ni1—N2—C122.34 (12)N2—C8—C13—O5−5.3 (2)
C5—N1—C1—C2−1.1 (3)C9—C8—C13—O5175.96 (16)
Ni1—N1—C1—C2−179.00 (13)Ni1—O7—C14—O8178.91 (14)
C5—N1—C1—C6178.18 (15)Ni1—O7—C14—C120.24 (18)
Ni1—N1—C1—C60.27 (19)N2—C12—C14—O8−177.18 (15)
N1—C1—C2—C31.2 (3)C11—C12—C14—O82.3 (3)
C6—C1—C2—C3−178.01 (17)N2—C12—C14—O71.6 (2)
C1—C2—C3—C4−0.4 (3)C11—C12—C14—O7−178.94 (16)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1···O50.852.122.852 (2)143
O1W—H2···O6Wiii0.851.922.756 (2)169
O2W—H3···O4iii0.851.952.787 (2)166
O2W—H4···O6Wiv0.851.872.724 (2)178
O3W—H5···O70.852.052.891 (2)173
O3W—H6···O9Wiii0.851.942.789 (2)180
O4W—H7···O2v0.851.972.767 (2)155
O4W—H8···O9W0.851.942.782 (2)175
O5W—H9···O80.851.842.690 (2)175
O5W—H10···O7Wvi0.851.882.722 (2)170
O6W—H11···O40.851.852.670 (2)162
O6W—H12···O8Wvii0.851.932.777 (2)172
O7W—H13···O80.851.862.707 (2)173
O7W—H14···O1vi0.851.942.760 (2)163
O8W—H15···O1Wvii0.852.433.106 (2)137
O8W—H16···O30.851.952.787 (2)166
O9W—H17···O7Wii0.851.882.705 (2)164
O9W—H18···O2viii0.851.982.779 (2)156
C2—H2A···O3Wiii0.952.373.266 (2)157
C9—H9A···O8Wix0.952.383.183 (2)143

Symmetry codes: (iii) x, −y+3/2, z+1/2; (iv) x, y, z+1; (v) x, y, z−1; (vi) x, −y+1/2, z−1/2; (vii) −x, −y+1, −z; (ii) −x+1, −y+1, −z; (viii) x, −y+3/2, z−1/2; (ix) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2279).

References

  • Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc 5, 184–227.
  • Bruker (2005). APEX2,SADABSandSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Çolak, A. T., Akduman, D., Yeşilel, O. Z. & Büyükgüngör, O. (2008). Transition Met. Chem.34 861–868.
  • Moghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem.631 160–169.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography