PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1981.
Published online 2010 July 10. doi:  10.1107/S1600536810026425
PMCID: PMC3007461

(E)-3-[1-(2,4-Difluoro­phen­yl)eth­yl]-5-methyl-N-nitro-1,3,5-oxadiazinan-4-imine

Abstract

The 1,3,5-oxadiazinane ring in the title compound, C12H14F2N4O3, has a conformation inter­mediate between half-chair and screw-boat. The crystal structure is stabilized by weak inter­molecular C—H(...)O hydrogen bonds. Weak π–π inter­actions are indicated by the relatively long centroid–centroid distance of 3.9199 (12) Å and inter­planar distance of 3.803 Å between symmetry-related benzene rings from neighbouring mol­ecules.

Related literature

An important type of insecticide, oxadiazine compounds are highly efficient and of low toxicity, see: Gsell et al.(1998 [triangle]). The title compound has been used to synthesize many similar insecticides, see: Maienfisch et al. (1994 [triangle]). For the preparation of the title compound, see: Gottfied et al.(2001 [triangle]). For the related structures, see: Chopra et al., (2004 [triangle]); Kang et al. (2008 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1981-scheme1.jpg

Experimental

Crystal data

  • C12H14F2N4O3
  • M r = 300.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1981-efi1.jpg
  • a = 13.385 (3) Å
  • b = 6.7470 (13) Å
  • c = 15.073 (3) Å
  • β = 101.25 (3)°
  • V = 1335.0 (5) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 1.11 mm−1
  • T = 113 K
  • 0.26 × 0.24 × 0.22 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: numerical (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.762, T max = 0.793
  • 13266 measured reflections
  • 2567 independent reflections
  • 2168 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.106
  • S = 1.09
  • 2567 reflections
  • 193 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810026425/dn2586sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026425/dn2586Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As an important type of insecticides, oxadiazine compounds are highly efficient and of low toxicity (Gsell, et al., 1998). Lots of similar insecticides compounds were synthesized with the title compounds (I) (Maienfisch, et al., 1994). We report the synthesis and crystal structure of the title compound, (I).

The conformation of the 1,3,5-oxadiazinane ring in(I)is intermediate between half-chair and screw-boat with puckering parameters (Cremer & Pople, 1975): Q= 0.5303 (12)Å; θ= 59.14 (13)°; [var phi]= 329,54 (15)°. The benzene ring forms dihedral angles of 74.84 (3)° and 87.30 (2)° with the mean plane of the oxadiazine ring. The bond lengths and angles of the oxadiazine rings are in a good agreement with those reported previously (Chopra, et al., 2004). The N=C bond length [N3=C2 = 1.3804 (2) Å] are close to the value reported in the literature (Kang,et al.,2008).

The structure is stabilized by hydrogen bonds of C-H···O type. And with a π-π stacking between symmetry related phenyl rings with a centroid-to-centroid distance of 3.9199 (12)Å and interplanar distance of 3.803Å resulting in a 0.951Å slippage.

Experimental

1-(1-bromoethyl)-2,4-difluorobenzene 4.5 g (20.0 mmol),(Z)-3-methyl-N– nitro-1,3,5-oxadiazinan-4-imine 3.2 g (20.0 mmol), potassium carbonate 2.8 g (20.0 mmol) and acetonitril 20 g were charged in a flask equipped with stirrer, water separator and reflux condenser. The mixture was heated to reflux for 4 h. Upon cooling at room temperature. The reaction mixture was filtered, and the solution was concentrated under reduced pressure to give the title compound (I) 4.5 g (76% yield). (Gottfied, et al., 2001). Single crystals suitable for X-ray measurement were grown by slow evaporation of an ethanol solution of (I).

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.95Å (aromatic), 0.98 Å (methyl), 0.99 Å (methylene) and 1.0 Å (methine) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl).

Figures

Fig. 1.
View of the title compound (I), with the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.H atoms are represented as small spheres of arbitrary radii.

Crystal data

C12H14F2N4O3F(000) = 624
Mr = 300.27Dx = 1.494 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 1502 reflections
a = 13.385 (3) Åθ = 27.7–72.0°
b = 6.7470 (13) ŵ = 1.11 mm1
c = 15.073 (3) ÅT = 113 K
β = 101.25 (3)°Prism, colorless
V = 1335.0 (5) Å30.26 × 0.24 × 0.22 mm
Z = 4

Data collection

Rigaku Saturn diffractometer2567 independent reflections
Radiation source: fine-focus sealed tube2168 reflections with I > 2σ(I)
graphiteRint = 0.061
Detector resolution: 14.63 pixels mm-1θmax = 72.3°, θmin = 3.4°
ω scansh = −16→15
Absorption correction: numerical (CrystalClear; Rigaku, 2005)k = −7→7
Tmin = 0.762, Tmax = 0.793l = −17→18
13266 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.106w = 1/[σ2(Fo2) + (0.0692P)2 + 0.0616P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2567 reflectionsΔρmax = 0.31 e Å3
193 parametersΔρmin = −0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0131 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F10.40932 (6)0.24125 (13)0.33990 (6)0.0436 (3)
F20.67967 (7)0.68795 (18)0.36250 (8)0.0676 (4)
O10.23598 (6)0.67016 (13)0.16461 (6)0.0279 (2)
O20.04094 (7)0.32758 (14)0.35714 (7)0.0374 (3)
O30.09896 (7)0.03447 (15)0.39933 (6)0.0365 (3)
N10.13558 (7)0.38098 (16)0.16500 (6)0.0230 (2)
N20.21022 (7)0.52761 (15)0.29879 (6)0.0235 (2)
N30.16278 (8)0.18616 (15)0.29436 (7)0.0272 (3)
N40.09994 (7)0.18567 (15)0.35200 (7)0.0246 (3)
C10.16316 (9)0.5470 (2)0.11134 (8)0.0274 (3)
H1A0.19100.49460.05980.033*
H1B0.10150.62540.08660.033*
C20.16748 (8)0.36822 (18)0.25358 (8)0.0220 (3)
C30.20435 (10)0.71093 (19)0.24732 (8)0.0261 (3)
H3A0.13360.76180.23520.031*
H3B0.24920.81260.28200.031*
C40.07765 (10)0.2205 (2)0.11312 (9)0.0302 (3)
H4A0.12370.11100.10650.045*
H4B0.04550.26970.05320.045*
H4C0.02500.17360.14500.045*
C50.27466 (9)0.51446 (19)0.39058 (7)0.0240 (3)
H50.27410.37340.41080.029*
C60.22926 (10)0.6404 (2)0.45658 (8)0.0330 (3)
H6A0.22350.77810.43550.050*
H6B0.27350.63440.51650.050*
H6C0.16150.58970.46020.050*
C70.38383 (9)0.5676 (2)0.38557 (8)0.0265 (3)
C80.44655 (10)0.4260 (2)0.35833 (8)0.0299 (3)
C90.54602 (10)0.4619 (3)0.34965 (9)0.0401 (4)
H90.58700.36150.33070.048*
C100.58224 (10)0.6488 (3)0.36972 (11)0.0442 (4)
C110.52547 (12)0.7976 (3)0.39754 (12)0.0480 (4)
H110.55330.92610.41120.058*
C120.42598 (11)0.7545 (2)0.40513 (10)0.0380 (3)
H120.38560.85570.42420.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0385 (5)0.0347 (5)0.0584 (6)0.0058 (4)0.0117 (4)−0.0135 (4)
F20.0272 (5)0.0938 (9)0.0812 (8)−0.0096 (5)0.0090 (4)0.0320 (6)
O10.0302 (5)0.0302 (5)0.0240 (4)−0.0087 (4)0.0076 (3)0.0012 (3)
O20.0327 (5)0.0287 (6)0.0561 (6)0.0059 (4)0.0219 (4)0.0054 (4)
O30.0432 (6)0.0312 (6)0.0361 (5)−0.0011 (4)0.0104 (4)0.0155 (4)
N10.0241 (5)0.0235 (6)0.0218 (5)−0.0033 (4)0.0051 (4)−0.0011 (4)
N20.0298 (5)0.0210 (6)0.0193 (5)−0.0006 (4)0.0041 (4)0.0004 (4)
N30.0332 (6)0.0203 (6)0.0312 (6)0.0007 (4)0.0139 (4)0.0022 (4)
N40.0255 (5)0.0232 (6)0.0249 (5)−0.0001 (4)0.0043 (4)0.0041 (4)
C10.0324 (6)0.0294 (7)0.0201 (6)−0.0057 (5)0.0048 (4)0.0016 (5)
C20.0220 (5)0.0225 (6)0.0229 (6)0.0016 (4)0.0082 (4)0.0000 (4)
C30.0327 (6)0.0222 (7)0.0228 (6)−0.0016 (5)0.0038 (5)0.0012 (4)
C40.0280 (6)0.0294 (7)0.0317 (6)−0.0035 (5)0.0022 (5)−0.0082 (5)
C50.0274 (6)0.0251 (7)0.0193 (6)0.0029 (5)0.0038 (4)0.0007 (4)
C60.0339 (7)0.0420 (8)0.0227 (6)0.0089 (6)0.0043 (5)−0.0043 (5)
C70.0283 (6)0.0286 (7)0.0218 (6)0.0020 (5)0.0030 (4)0.0023 (5)
C80.0297 (6)0.0325 (8)0.0271 (6)0.0030 (5)0.0041 (5)0.0006 (5)
C90.0291 (7)0.0560 (10)0.0356 (7)0.0096 (7)0.0074 (5)0.0064 (7)
C100.0239 (7)0.0612 (11)0.0458 (8)−0.0045 (7)0.0026 (6)0.0193 (7)
C110.0405 (8)0.0409 (10)0.0587 (10)−0.0124 (7)−0.0004 (7)0.0099 (7)
C120.0372 (7)0.0305 (8)0.0447 (8)−0.0009 (6)0.0039 (6)−0.0008 (6)

Geometric parameters (Å, °)

F1—C81.3508 (17)C4—H4A0.9800
F2—C101.3555 (16)C4—H4B0.9800
O1—C11.4071 (15)C4—H4C0.9800
O1—C31.4195 (15)C5—C71.5207 (16)
O2—N41.2531 (14)C5—C61.5220 (16)
O3—N41.2463 (13)C5—H51.0000
N1—C21.3229 (15)C6—H6A0.9800
N1—C41.4656 (16)C6—H6B0.9800
N1—C11.4703 (15)C6—H6C0.9800
N2—C21.3402 (16)C7—C81.3859 (18)
N2—C31.4540 (16)C7—C121.389 (2)
N2—C51.4834 (15)C8—C91.3843 (18)
N3—N41.3219 (14)C9—C101.364 (2)
N3—C21.3804 (16)C9—H90.9500
C1—H1A0.9900C10—C111.373 (3)
C1—H1B0.9900C11—C121.389 (2)
C3—H3A0.9900C11—H110.9500
C3—H3B0.9900C12—H120.9500
C1—O1—C3108.88 (9)H4B—C4—H4C109.5
C2—N1—C4121.56 (10)N2—C5—C7109.21 (9)
C2—N1—C1122.59 (10)N2—C5—C6110.04 (10)
C4—N1—C1115.64 (10)C7—C5—C6114.27 (11)
C2—N2—C3115.97 (10)N2—C5—H5107.7
C2—N2—C5122.63 (10)C7—C5—H5107.7
C3—N2—C5120.64 (10)C6—C5—H5107.7
N4—N3—C2112.64 (10)C5—C6—H6A109.5
O3—N4—O2120.86 (10)C5—C6—H6B109.5
O3—N4—N3117.21 (10)H6A—C6—H6B109.5
O2—N4—N3121.88 (10)C5—C6—H6C109.5
O1—C1—N1110.87 (9)H6A—C6—H6C109.5
O1—C1—H1A109.5H6B—C6—H6C109.5
N1—C1—H1A109.5C8—C7—C12116.37 (12)
O1—C1—H1B109.5C8—C7—C5119.71 (12)
N1—C1—H1B109.5C12—C7—C5123.90 (12)
H1A—C1—H1B108.1F1—C8—C9117.73 (12)
N1—C2—N2118.86 (11)F1—C8—C7118.46 (11)
N1—C2—N3118.27 (11)C9—C8—C7123.80 (14)
N2—C2—N3122.66 (11)C10—C9—C8116.62 (14)
O1—C3—N2108.03 (10)C10—C9—H9121.7
O1—C3—H3A110.1C8—C9—H9121.7
N2—C3—H3A110.1F2—C10—C9117.92 (15)
O1—C3—H3B110.1F2—C10—C11118.73 (15)
N2—C3—H3B110.1C9—C10—C11123.35 (13)
H3A—C3—H3B108.4C10—C11—C12117.93 (15)
N1—C4—H4A109.5C10—C11—H11121.0
N1—C4—H4B109.5C12—C11—H11121.0
H4A—C4—H4B109.5C7—C12—C11121.92 (15)
N1—C4—H4C109.5C7—C12—H12119.0
H4A—C4—H4C109.5C11—C12—H12119.0
C2—N3—N4—O3−172.41 (10)C2—N2—C5—C6−121.23 (12)
C2—N3—N4—O210.03 (16)C3—N2—C5—C669.16 (14)
C3—O1—C1—N1−47.20 (13)N2—C5—C7—C8−81.41 (14)
C2—N1—C1—O17.42 (16)C6—C5—C7—C8154.88 (11)
C4—N1—C1—O1−167.37 (10)N2—C5—C7—C1297.20 (13)
C4—N1—C2—N2−172.76 (10)C6—C5—C7—C12−26.51 (17)
C1—N1—C2—N212.76 (16)C12—C7—C8—F1179.02 (11)
C4—N1—C2—N312.45 (16)C5—C7—C8—F1−2.26 (17)
C1—N1—C2—N3−162.04 (10)C12—C7—C8—C9−0.32 (19)
C3—N2—C2—N18.56 (15)C5—C7—C8—C9178.39 (11)
C5—N2—C2—N1−161.50 (10)F1—C8—C9—C10−179.21 (12)
C3—N2—C2—N3−176.88 (10)C7—C8—C9—C100.1 (2)
C5—N2—C2—N313.05 (16)C8—C9—C10—F2179.50 (12)
N4—N3—C2—N1−116.27 (12)C8—C9—C10—C110.2 (2)
N4—N3—C2—N269.15 (14)F2—C10—C11—C12−179.59 (13)
C1—O1—C3—N267.89 (12)C9—C10—C11—C12−0.2 (2)
C2—N2—C3—O1−48.47 (13)C8—C7—C12—C110.2 (2)
C5—N2—C3—O1121.80 (11)C5—C7—C12—C11−178.43 (13)
C2—N2—C5—C7112.59 (12)C10—C11—C12—C70.0 (2)
C3—N2—C5—C7−57.02 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.992.503.1908 (16)127
C3—H3A···O2ii0.992.513.4439 (18)156
C4—H4C···O2iii0.982.493.1665 (17)126
C6—H6A···O3iv0.982.393.2046 (18)140

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2586).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2413–o2414.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gottfied, S., Thomas, R. & Verena, G. (2001). WO Patent 0100623.
  • Gsell, L. & Maientisch, P. (1998). WO Patent 9806710.
  • Kang, T.-N., Zhang, L., Ling, Y. & Yang, X.-L. (2008). Acta Cryst. E64, o1154. [PMC free article] [PubMed]
  • Maienfisch, P. & Huerlimann, H. (1994). CN Patent 1084171.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography