PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2034.
Published online 2010 July 17. doi:  10.1107/S1600536810026851
PMCID: PMC3007451

2-[1-(3-Oxo-1,3-dihydro-2-benzofuran-1-yl)-1H-benzimidazol-2-yl]benzoic acid methanol solvate

Abstract

The condensation of 2-carb­oxy­benzaldehyde with 1,2-phenyl­enediamine unexpectedly yielded the title compound, C22H14N2O4·CH4O. The benzimidazole ring system is almost perpendicular to the phthalazine ring system, making a dihedral angle of 88.4 (5)°. Inter­molecular O—H(...)N and O—H(...)O hydrogen-bonding inter­actions stabilize the crystal structure.

Related literature

For hydrogen bonding, see: Scheiner (1997 [triangle]). For the role of hydrogen bonding between solvent mol­ecules and heterocyclic compounds in the formation of supra­molecules, see: Amaya & Rebek (2004 [triangle]); Roesky & Andruh (2003 [triangle]). Nelson et al. (1982 [triangle]) have reported that reaction of 2,6-diacetyl­pyridine and 1,2-phenyl­enediamine can form benzimidazole groups via oxidative dehydrogenation and Li et al. (2002 [triangle]) have isolated a benzimidazole derivate by the reaction of 5-bromo-2-hy­droxy­­benzaldehyde and 1,2-phenyl­enediamine in the presence of anhydrous ethanol solution. For a related structure, see: Zhang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2034-scheme1.jpg

Experimental

Crystal data

  • C22H14N2O4·CH4O
  • M r = 402.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2034-efi1.jpg
  • a = 13.7946 (8) Å
  • b = 9.7815 (7) Å
  • c = 15.3083 (9) Å
  • β = 103.985 (4)°
  • V = 2004.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.972, T max = 0.981
  • 16115 measured reflections
  • 3618 independent reflections
  • 2220 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.179
  • S = 1.07
  • 3618 reflections
  • 273 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810026851/jh2172sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026851/jh2172Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge South China Normal University for supporting this work.

supplementary crystallographic information

Comment

Hydrogen bonding is one of an important non-covalent interaction,which plays a great role in supramolecular chemistry and material sciences (Scheiner,1997). Among solvent molecules and the hetercycle compounds the hydrogen bonding comprising O– or N– donors has been confirmed to be a useful and powerful organizing force to form supramolecules (Roesky et al., 2003; Amaya et al., 2004). Nelson et al. (Nelson et al., 1982) have reported a reaction of 2,6-diacetylpyridine and 1,2-phenylenediamine can form benzimidazole groups via oxidative dehydrogenation and Li et al. (Li et al., 2002) have also isolated a benzimidazole derivate in the reaction of 5-bromo-2-hydroxybenzaldehyde and 1,2-phenylenediamine in the presence of the anhydrous ethanol solution. Here, we chose 2-carboxybenzaldehyde and 1,2-phenylenediamine successfully synthesized the title compound 2-(1-(3'-phthalide-yl)-1H-benzoimidazol-2-yl)benzoic acid, (I).

In the main molecule of the title compound (I), (Fig. 1), the benzimidazole ring is almost perpendicular to the phthalazine ring with a dihedral angle of 88.4 (5)°, The bond lengths and angles are comparable to the similar structures (Zhang et al., 2009). Intermolecular O—H···O and O—H···N interactions between the symmetry-related molecues (Table 1, Fig. 2). Adjacent molecules are stacked through π-π interactions [Cg1···Cg2(-x, 1 - y, -z) = 3.578 (3) Å, where Cg1 and Cg2 are centroids of the N1/C1—C3/C8/C9 and C4—C9 rings, respectively].

Experimental

2-carboxybenzaldehyde (0.30 g; 2 mmol) and 1,2-phenylenediamine (0.108 g; 1 mmol) were mixture in the methanol solution (30 ml), and the mixture was refluxed 3 h at 353 K. The resultant yellow precipitate was filtered and recrystallized in methanol/chloroform (4:1) solution. Standing of the solution in air at room temperation obtained colorless block crystals (I) in 79% yield.

Refinement

water H atoms were located in a difference Fourier map and were refined isotropically, Other H-atoms on aromatic ring were placed in calculated positions with C—H = 0.93 Å; refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids.
Fig. 2.
A packing view of (I) along the b axis, showing the O—H···O and O—H···N hydrogen bonds.

Crystal data

C22H14N2O4·CH4OF(000) = 840
Mr = 402.39Dx = 1.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4300 reflections
a = 13.7946 (8) Åθ = 2.5–25.2°
b = 9.7815 (7) ŵ = 0.10 mm1
c = 15.3083 (9) ÅT = 293 K
β = 103.985 (4)°Block, colorless
V = 2004.4 (2) Å30.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer3618 independent reflections
Radiation source: fine-focus sealed tube2220 reflections with I > 2σ(I)
graphiteRint = 0.042
ω scansθmax = 25.2°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→16
Tmin = 0.972, Tmax = 0.981k = −11→11
16115 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0793P)2 + 0.7223P] where P = (Fo2 + 2Fc2)/3
3618 reflections(Δ/σ)max = 0.005
273 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2698 (3)0.7568 (4)0.3140 (2)0.0646 (8)
C20.2114 (2)0.7749 (3)0.2192 (2)0.0574 (8)
C30.1577 (3)0.8940 (3)0.1918 (2)0.0735 (9)
H30.15390.96030.23440.088*
C40.1102 (3)0.9157 (4)0.1035 (3)0.0837 (11)
H40.07430.99600.08690.100*
C50.1153 (3)0.8195 (4)0.0393 (2)0.0802 (10)
H50.08420.8355−0.02080.096*
C60.1665 (2)0.6995 (3)0.0642 (2)0.0675 (9)
H60.16920.63430.02070.081*
C70.2148 (2)0.6743 (3)0.15465 (19)0.0534 (7)
C80.2695 (2)0.5440 (3)0.17289 (17)0.0514 (7)
C90.3092 (2)0.3309 (3)0.21960 (18)0.0504 (7)
C100.3180 (2)0.1996 (3)0.2542 (2)0.0619 (8)
H100.27470.16640.28720.074*
C110.3938 (2)0.1202 (4)0.2373 (2)0.0748 (10)
H110.40150.03130.25930.090*
C120.4587 (3)0.1686 (4)0.1886 (3)0.0774 (10)
H120.50880.11130.17860.093*
C130.4514 (2)0.2990 (4)0.1547 (2)0.0700 (9)
H130.49550.33130.12210.084*
C140.3749 (2)0.3812 (3)0.17105 (19)0.0550 (7)
C150.2117 (3)0.3034 (4)0.4943 (2)0.0780 (10)
H150.25040.32000.55200.094*
C160.1467 (3)0.1954 (4)0.4806 (2)0.0805 (11)
H160.14230.14080.52930.097*
C170.0878 (3)0.1656 (4)0.3965 (2)0.0698 (9)
H170.04440.09130.38680.084*
C180.0965 (2)0.2521 (3)0.32720 (18)0.0519 (7)
C190.1618 (2)0.3603 (3)0.34079 (17)0.0499 (7)
C200.2215 (2)0.3885 (3)0.42476 (19)0.0666 (9)
H200.26620.46130.43430.080*
C210.1534 (2)0.4328 (3)0.25260 (17)0.0498 (7)
H210.12960.52630.25720.060*
C220.0433 (2)0.2488 (3)0.2319 (2)0.0546 (7)
C240.4396 (5)0.6942 (6)0.5552 (4)0.149 (2)
H24A0.50880.70020.58650.223*
H24B0.43190.62790.50780.223*
H24C0.40080.66710.59660.223*
N10.34805 (17)0.5147 (3)0.14283 (15)0.0571 (7)
N20.24148 (16)0.4369 (2)0.22025 (14)0.0483 (6)
O10.3086 (2)0.6524 (3)0.34359 (16)0.0873 (8)
O20.2764 (2)0.8683 (3)0.36180 (18)0.1010 (9)
H20.30910.85300.41310.151*
O3−0.01827 (18)0.1711 (3)0.19162 (15)0.0789 (7)
O40.07646 (14)0.3553 (2)0.18969 (12)0.0556 (5)
O50.4054 (2)0.8271 (3)0.51697 (18)0.1090 (10)
H5A0.39300.87630.55630.163*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.073 (2)0.058 (2)0.063 (2)−0.0139 (17)0.0172 (17)−0.0095 (17)
C20.0678 (19)0.0495 (18)0.0555 (18)−0.0065 (15)0.0161 (15)0.0008 (14)
C30.087 (2)0.055 (2)0.079 (2)−0.0016 (18)0.0216 (19)0.0016 (17)
C40.096 (3)0.062 (2)0.088 (3)0.009 (2)0.013 (2)0.016 (2)
C50.088 (3)0.079 (3)0.065 (2)0.001 (2)0.0033 (18)0.019 (2)
C60.081 (2)0.067 (2)0.0524 (18)−0.0029 (18)0.0126 (16)0.0050 (16)
C70.0568 (17)0.0519 (17)0.0526 (17)−0.0054 (14)0.0155 (14)0.0049 (14)
C80.0548 (17)0.0563 (18)0.0424 (15)−0.0016 (14)0.0108 (13)−0.0001 (13)
C90.0497 (16)0.0541 (17)0.0456 (15)0.0014 (13)0.0084 (13)−0.0025 (13)
C100.0607 (19)0.0605 (19)0.066 (2)0.0062 (15)0.0183 (15)0.0060 (16)
C110.067 (2)0.066 (2)0.091 (3)0.0134 (18)0.0187 (19)0.0115 (19)
C120.062 (2)0.078 (3)0.094 (3)0.0177 (18)0.0219 (19)0.001 (2)
C130.0529 (18)0.086 (3)0.074 (2)0.0035 (17)0.0220 (16)−0.0046 (19)
C140.0536 (17)0.0602 (19)0.0504 (16)−0.0026 (14)0.0111 (14)−0.0015 (14)
C150.100 (3)0.082 (2)0.0461 (18)0.004 (2)0.0067 (17)0.0040 (18)
C160.106 (3)0.089 (3)0.0502 (19)0.011 (2)0.0255 (19)0.0221 (19)
C170.081 (2)0.073 (2)0.061 (2)0.0001 (18)0.0259 (18)0.0145 (17)
C180.0551 (17)0.0579 (18)0.0463 (16)0.0042 (14)0.0194 (13)0.0032 (13)
C190.0565 (17)0.0525 (17)0.0423 (15)0.0079 (14)0.0151 (13)0.0023 (13)
C200.077 (2)0.070 (2)0.0497 (18)0.0010 (17)0.0080 (15)−0.0033 (16)
C210.0567 (17)0.0496 (16)0.0437 (15)0.0018 (13)0.0136 (13)0.0005 (13)
C220.0547 (17)0.0605 (19)0.0508 (17)−0.0030 (15)0.0167 (14)0.0003 (15)
C240.196 (6)0.126 (4)0.107 (4)0.046 (4)0.003 (4)−0.023 (3)
N10.0575 (15)0.0634 (16)0.0525 (14)−0.0064 (12)0.0172 (12)0.0006 (12)
N20.0515 (13)0.0486 (13)0.0471 (13)0.0029 (11)0.0163 (10)0.0039 (11)
O10.1053 (19)0.0746 (17)0.0682 (15)0.0027 (15)−0.0062 (13)−0.0027 (13)
O20.138 (2)0.0844 (18)0.0751 (17)0.0012 (17)0.0144 (16)−0.0227 (14)
O30.0792 (15)0.0920 (18)0.0642 (14)−0.0309 (14)0.0147 (12)−0.0024 (13)
O40.0561 (12)0.0671 (13)0.0422 (10)−0.0067 (10)0.0089 (9)0.0045 (9)
O50.117 (2)0.138 (3)0.0689 (16)0.024 (2)0.0179 (16)−0.0279 (17)

Geometric parameters (Å, °)

C1—O11.190 (4)C13—H130.9300
C1—O21.305 (4)C14—N11.397 (4)
C1—C21.489 (4)C15—C161.368 (5)
C2—C31.390 (4)C15—C201.383 (5)
C2—C71.404 (4)C15—H150.9300
C3—C41.369 (5)C16—C171.378 (5)
C3—H30.9300C16—H160.9300
C4—C51.375 (5)C17—C181.385 (4)
C4—H40.9300C17—H170.9300
C5—C61.376 (5)C18—C191.372 (4)
C5—H50.9300C18—C221.467 (4)
C6—C71.405 (4)C19—C201.377 (4)
C6—H60.9300C19—C211.505 (4)
C7—C81.473 (4)C20—H200.9300
C8—N11.307 (3)C21—N21.419 (3)
C8—N21.381 (3)C21—O41.461 (3)
C9—C101.384 (4)C21—H210.9800
C9—C141.393 (4)C22—O31.194 (3)
C9—N21.397 (3)C22—O41.362 (3)
C10—C111.376 (4)C24—O51.456 (6)
C10—H100.9300C24—H24A0.9600
C11—C121.380 (5)C24—H24B0.9600
C11—H110.9300C24—H24C0.9600
C12—C131.372 (5)O2—H20.8200
C12—H120.9300O5—H5A0.8200
C13—C141.397 (4)
O1—C1—O2122.6 (3)C13—C14—N1129.6 (3)
O1—C1—C2124.1 (3)C16—C15—C20122.0 (3)
O2—C1—C2113.3 (3)C16—C15—H15119.0
C3—C2—C7118.7 (3)C20—C15—H15119.0
C3—C2—C1121.1 (3)C15—C16—C17121.5 (3)
C7—C2—C1120.0 (3)C15—C16—H16119.2
C4—C3—C2121.4 (3)C17—C16—H16119.2
C4—C3—H3119.3C16—C17—C18116.4 (3)
C2—C3—H3119.3C16—C17—H17121.8
C3—C4—C5120.3 (3)C18—C17—H17121.8
C3—C4—H4119.8C19—C18—C17122.1 (3)
C5—C4—H4119.8C19—C18—C22108.7 (2)
C6—C5—C4119.8 (3)C17—C18—C22129.3 (3)
C6—C5—H5120.1C18—C19—C20121.2 (3)
C4—C5—H5120.1C18—C19—C21108.8 (2)
C5—C6—C7120.9 (3)C20—C19—C21130.0 (3)
C5—C6—H6119.6C19—C20—C15116.7 (3)
C7—C6—H6119.6C19—C20—H20121.6
C2—C7—C6118.8 (3)C15—C20—H20121.6
C2—C7—C8125.1 (3)N2—C21—O4109.3 (2)
C6—C7—C8116.0 (3)N2—C21—C19116.1 (2)
N1—C8—N2112.3 (2)O4—C21—C19103.4 (2)
N1—C8—C7123.6 (2)N2—C21—H21109.2
N2—C8—C7124.1 (2)O4—C21—H21109.2
C10—C9—C14121.6 (3)C19—C21—H21109.2
C10—C9—N2133.1 (3)O3—C22—O4121.4 (3)
C14—C9—N2105.3 (2)O3—C22—C18130.6 (3)
C11—C10—C9116.9 (3)O4—C22—C18108.0 (2)
C11—C10—H10121.5O5—C24—H24A109.5
C9—C10—H10121.5O5—C24—H24B109.5
C10—C11—C12122.0 (3)H24A—C24—H24B109.5
C10—C11—H11119.0O5—C24—H24C109.5
C12—C11—H11119.0H24A—C24—H24C109.5
C13—C12—C11121.7 (3)H24B—C24—H24C109.5
C13—C12—H12119.2C8—N1—C14106.0 (2)
C11—C12—H12119.2C8—N2—C9106.6 (2)
C12—C13—C14117.2 (3)C8—N2—C21125.2 (2)
C12—C13—H13121.4C9—N2—C21127.7 (2)
C14—C13—H13121.4C1—O2—H2109.5
C9—C14—C13120.7 (3)C22—O4—C21111.0 (2)
C9—C14—N1109.7 (2)C24—O5—H5A109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O50.821.832.632 (4)167
O5—H5A···N1i0.821.922.733 (3)173

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2172).

References

  • Amaya, T. & Rebek, J. (2004). J. Am. Chem. Soc.126, 14149–14156. [PubMed]
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, J., Zhang, F. X. & Shi, Q. Z. (2002). Chin. J. Inorg. Chem.6, 643–645.
  • Nelson, S. M., Esho, F. S. & Drew, M. G. B. (1982). J. Chem. Soc. Dalton Trans. pp. 407–415.
  • Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev.236, 91–119.
  • Scheiner (1997). Please give full reference.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, Y.-L., Wu, Y.-J., Peng, G. & Deng, H. (2009). Acta Cryst. E65, o974. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography