PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2151–o2152.
Published online 2010 July 31. doi:  10.1107/S160053681002965X
PMCID: PMC3007449

2-Amino-4-methyl­pyridinium 2-hy­droxy­benzoate

Abstract

The asymmetric unit of the title mol­ecular salt, C6H9N2 +·C7H5O3 , contains two cations and two anions. Both the salicylate anions contain an intra­molecular O—H(...)O hydrogen bond, which generates an S(6) ring. Both the 2-amino-4-methyl­pyridine mol­ecules are protonated at their pyridine N atoms. In the crystal, both cations form two N—H(...)O hydrogen bonds to their adjacent anions, forming ion pairs. Further N—H(...)O links generate sheets lying parallel to the ab plane. In addition, weak C—H(...)O bonds and aromatic π–π stacking inter­actions [centroid–centroid distances = 3.5691 (9) and 3.6215 (9) Å] are observed between the cations and anions.

Related literature

For related structures, see: Navarro Ranninger et al. (1985 [triangle]); Luque et al. (1997 [triangle]); Qin et al. (1999 [triangle]); Jin et al. (2001); Albrecht et al. (2003 [triangle]); Kvick & Noordik (1977 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2151-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·C7H5O3
  • M r = 246.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2151-efi1.jpg
  • a = 7.2417 (2) Å
  • b = 12.5520 (3) Å
  • c = 14.7699 (3) Å
  • α = 68.752 (2)°
  • β = 82.038 (2)°
  • γ = 88.824 (2)°
  • V = 1238.58 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.32 × 0.10 × 0.04 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.971, T max = 0.996
  • 23090 measured reflections
  • 8280 independent reflections
  • 5112 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.155
  • S = 1.00
  • 8280 reflections
  • 359 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002965X/hb5564sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002965X/hb5564Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Luque et al., 1997; Qin et al., 1999) or as protonated cations (Luque et al., 1997; Jin et al., 2001; Albrecht et al., 2003). In order to study some hydrogen bonding interactions, the synthesis and structure of the title salt, (I), is presented here.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-4-methylpyridinium cations (A and B) and two salicylate anions (A and B) (Fig. 1). Each 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.004 (1) Å for atom N1A in cation A and 0.006 (2) Å for atom C11B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C9A—N1A—C10A [122.06 (14)°] and C9B—N1B—C10B [121.76 (13)°] angles compared to those observed in an unprotonated structure (Kvick & Noordik, 1977). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure (Fig. 2), the carboxylate groups of each salicylate anions interact with the corresponding 2-amino-4-methylpyridinium cations via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). Furthermore, these motifs are connected via N—H···O hydrogen bonds, forming a two-dimensional network parallel to the ab-plane. There is an intramolecular O—H···O hydrogen bond in the salicylate anions, which generates an S(6) ring motif. In addition, weak C—H···O and π–π interactions are observed between the cation-anion pairs, [Cg1(N1A/C8A–C12A)& Cg4(C1A–C6A)] and [Cg2(N1B/C8B–C12B) & Cg3(C1B–C6B)], with centroid-centroid distances of 3.5691 (9) Å (1+x, y, z) and 3.6215 (9) Å (-1+x, y, z), respectively.

Experimental

A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (54 mg, Aldrich) and salicylic acid (69 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless needles of (I) appeared after a few days.

Refinement

Atoms H1A3, H1B3,H1NA, H2NA, H3NA, H1NB, H2NB, H3NB were located from a difference Fourier map and were refined freely [N–H= 0.90 (2)– 0.99(20 Å and O–H =0.94 (2)–0.99 (2) Å]. The remaining hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Hydrogen bonding patterns in compound (I).

Crystal data

C6H9N2+·C7H5O3Z = 4
Mr = 246.26F(000) = 520
Triclinic, P1Dx = 1.321 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2417 (2) ÅCell parameters from 3981 reflections
b = 12.5520 (3) Åθ = 2.7–31.4°
c = 14.7699 (3) ŵ = 0.10 mm1
α = 68.752 (2)°T = 100 K
β = 82.038 (2)°Needle, colourless
γ = 88.824 (2)°0.32 × 0.10 × 0.04 mm
V = 1238.58 (5) Å3

Data collection

Bruker APEXII CCD diffractometer8280 independent reflections
Radiation source: fine-focus sealed tube5112 reflections with I > 2σ(I)
graphiteRint = 0.047
[var phi] and ω scansθmax = 31.6°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −10→10
Tmin = 0.971, Tmax = 0.996k = −15→18
23090 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0755P)2] where P = (Fo2 + 2Fc2)/3
8280 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1A0.68689 (15)−0.11656 (9)0.22307 (8)0.0266 (3)
O2A0.61939 (14)0.06247 (9)0.20906 (8)0.0243 (2)
O3A0.85815 (16)0.22440 (9)0.12227 (8)0.0255 (2)
C1A0.9761 (2)0.14446 (13)0.10815 (11)0.0204 (3)
C2A1.1562 (2)0.18050 (15)0.05960 (12)0.0290 (4)
H2AA1.19180.25750.03690.035*
C3A1.2811 (2)0.10169 (17)0.04530 (13)0.0366 (4)
H3AA1.40120.12600.01330.044*
C4A1.2299 (2)−0.01322 (16)0.07799 (13)0.0350 (4)
H4AA1.3150−0.06600.06840.042*
C5A1.0506 (2)−0.04874 (14)0.12505 (12)0.0263 (3)
H5AA1.0156−0.12570.14620.032*
C6A0.9217 (2)0.02859 (13)0.14131 (10)0.0198 (3)
C7A0.7306 (2)−0.01258 (12)0.19453 (11)0.0200 (3)
N1A0.68931 (17)0.46245 (11)0.40308 (10)0.0214 (3)
N2A0.74130 (19)0.65677 (12)0.35534 (11)0.0247 (3)
C8A0.6621 (2)0.57734 (14)0.23833 (11)0.0239 (3)
H8AA0.66700.64890.18850.029*
C9A0.6984 (2)0.56827 (13)0.33225 (11)0.0207 (3)
C10A0.6458 (2)0.36749 (13)0.38600 (12)0.0243 (3)
H10A0.63950.29660.43680.029*
C11A0.6114 (2)0.37414 (15)0.29629 (13)0.0281 (4)
H11A0.58260.30840.28520.034*
C12A0.6199 (2)0.48242 (15)0.21964 (12)0.0257 (3)
C13A0.5855 (2)0.49005 (17)0.11939 (13)0.0338 (4)
H13A0.60560.56770.07450.051*
H13B0.45930.46550.12250.051*
H13C0.66980.44170.09710.051*
O1B0.24453 (15)0.57634 (9)0.41257 (8)0.0228 (2)
O2B0.17672 (15)0.39175 (8)0.45092 (8)0.0239 (2)
O3B0.08596 (16)0.31742 (9)0.32564 (9)0.0257 (3)
C1B0.10480 (19)0.42674 (12)0.26094 (11)0.0192 (3)
C2B0.0707 (2)0.44786 (13)0.16487 (12)0.0223 (3)
H2BA0.03580.38800.14710.027*
C3B0.0891 (2)0.55775 (13)0.09701 (11)0.0229 (3)
H3BA0.06640.57160.03330.027*
C4B0.1412 (2)0.64860 (13)0.12204 (11)0.0234 (3)
H4BA0.15380.72250.07550.028*
C5B0.1739 (2)0.62728 (13)0.21704 (11)0.0212 (3)
H5BA0.20800.68780.23400.025*
C6B0.15685 (19)0.51694 (12)0.28802 (11)0.0174 (3)
C7B0.19489 (19)0.49451 (12)0.39042 (11)0.0183 (3)
N1B0.26797 (18)−0.00016 (10)0.30554 (9)0.0190 (3)
N2B0.34027 (19)−0.18896 (11)0.33877 (10)0.0242 (3)
C8B0.0346 (2)−0.14199 (13)0.40050 (11)0.0202 (3)
H8BA−0.0036−0.21860.43050.024*
C9B0.2159 (2)−0.11240 (12)0.34789 (11)0.0188 (3)
C10B0.1505 (2)0.08329 (12)0.31225 (11)0.0203 (3)
H10B0.19040.15950.28170.024*
C11B−0.0243 (2)0.05709 (13)0.36292 (11)0.0218 (3)
H11B−0.10280.11480.36800.026*
C12B−0.0857 (2)−0.05856 (13)0.40769 (10)0.0207 (3)
C13B−0.2817 (2)−0.08836 (15)0.46052 (12)0.0277 (4)
H13D−0.2952−0.16950.49540.042*
H13E−0.3683−0.06490.41380.042*
H13F−0.3067−0.04970.50610.042*
H1A30.743 (3)0.1794 (19)0.1574 (17)0.061 (7)*
H1NA0.719 (3)0.4528 (17)0.4688 (16)0.049 (6)*
H2NA0.748 (3)0.7276 (17)0.3090 (14)0.035 (5)*
H1B30.111 (3)0.327 (2)0.3833 (18)0.063 (7)*
H3NA0.769 (3)0.6423 (17)0.4187 (16)0.044 (6)*
H1NB0.390 (3)0.0191 (17)0.2677 (14)0.046 (6)*
H2NB0.457 (3)−0.1645 (16)0.2974 (14)0.039 (5)*
H3NB0.302 (2)−0.2656 (16)0.3608 (13)0.029 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0262 (6)0.0192 (5)0.0306 (6)−0.0005 (4)−0.0029 (5)−0.0047 (5)
O2A0.0183 (5)0.0199 (5)0.0321 (6)0.0006 (4)−0.0010 (4)−0.0071 (5)
O3A0.0233 (6)0.0201 (5)0.0297 (6)−0.0014 (4)0.0001 (5)−0.0061 (5)
C1A0.0193 (7)0.0240 (7)0.0168 (7)0.0010 (6)−0.0036 (6)−0.0057 (6)
C2A0.0231 (8)0.0311 (9)0.0268 (9)−0.0053 (7)0.0022 (6)−0.0052 (7)
C3A0.0234 (8)0.0492 (11)0.0310 (10)−0.0004 (8)0.0051 (7)−0.0104 (8)
C4A0.0281 (9)0.0431 (10)0.0323 (10)0.0099 (8)0.0014 (7)−0.0145 (8)
C5A0.0272 (8)0.0280 (8)0.0239 (8)0.0064 (6)−0.0042 (6)−0.0099 (7)
C6A0.0192 (7)0.0234 (7)0.0162 (7)0.0026 (6)−0.0040 (5)−0.0062 (6)
C7A0.0208 (7)0.0206 (7)0.0176 (7)0.0015 (6)−0.0063 (6)−0.0046 (6)
N1A0.0196 (6)0.0233 (6)0.0208 (7)0.0000 (5)−0.0031 (5)−0.0073 (5)
N2A0.0277 (7)0.0210 (7)0.0242 (7)0.0021 (5)−0.0069 (6)−0.0057 (6)
C8A0.0165 (7)0.0309 (8)0.0208 (8)0.0033 (6)−0.0028 (6)−0.0052 (6)
C9A0.0137 (6)0.0239 (7)0.0227 (8)0.0024 (5)−0.0021 (6)−0.0067 (6)
C10A0.0216 (7)0.0223 (7)0.0279 (8)−0.0023 (6)−0.0024 (6)−0.0079 (6)
C11A0.0218 (8)0.0332 (9)0.0330 (9)−0.0034 (7)−0.0017 (7)−0.0171 (7)
C12A0.0136 (7)0.0395 (9)0.0255 (8)0.0008 (6)−0.0022 (6)−0.0138 (7)
C13A0.0239 (8)0.0534 (11)0.0275 (9)−0.0020 (8)−0.0040 (7)−0.0185 (8)
O1B0.0295 (6)0.0175 (5)0.0216 (6)−0.0026 (4)−0.0058 (4)−0.0065 (4)
O2B0.0298 (6)0.0162 (5)0.0225 (6)−0.0027 (4)−0.0036 (5)−0.0030 (4)
O3B0.0318 (6)0.0153 (5)0.0302 (6)−0.0019 (4)−0.0077 (5)−0.0070 (5)
C1B0.0150 (6)0.0170 (7)0.0252 (8)0.0019 (5)−0.0024 (6)−0.0073 (6)
C2B0.0196 (7)0.0245 (7)0.0280 (8)0.0012 (6)−0.0054 (6)−0.0149 (7)
C3B0.0193 (7)0.0297 (8)0.0222 (8)0.0031 (6)−0.0055 (6)−0.0117 (7)
C4B0.0238 (8)0.0223 (7)0.0218 (8)0.0008 (6)−0.0036 (6)−0.0053 (6)
C5B0.0226 (7)0.0194 (7)0.0225 (8)−0.0010 (6)−0.0032 (6)−0.0087 (6)
C6B0.0132 (6)0.0180 (7)0.0207 (7)0.0000 (5)−0.0024 (5)−0.0067 (6)
C7B0.0152 (7)0.0174 (7)0.0209 (7)0.0010 (5)−0.0016 (5)−0.0058 (6)
N1B0.0184 (6)0.0159 (6)0.0217 (6)−0.0014 (5)−0.0032 (5)−0.0053 (5)
N2B0.0221 (7)0.0158 (6)0.0330 (8)−0.0004 (5)−0.0030 (6)−0.0071 (6)
C8B0.0214 (7)0.0181 (7)0.0188 (7)−0.0048 (6)−0.0033 (6)−0.0034 (6)
C9B0.0216 (7)0.0162 (7)0.0185 (7)−0.0001 (5)−0.0066 (6)−0.0048 (6)
C10B0.0235 (7)0.0160 (7)0.0214 (7)0.0010 (6)−0.0067 (6)−0.0056 (6)
C11B0.0229 (8)0.0229 (7)0.0216 (8)0.0035 (6)−0.0066 (6)−0.0093 (6)
C12B0.0208 (7)0.0264 (8)0.0148 (7)−0.0008 (6)−0.0056 (6)−0.0061 (6)
C13B0.0202 (8)0.0356 (9)0.0251 (8)−0.0018 (7)−0.0020 (6)−0.0087 (7)

Geometric parameters (Å, °)

O1A—C7A1.2500 (18)O1B—C7B1.2580 (17)
O2A—C7A1.2843 (16)O2B—C7B1.2722 (17)
O3A—C1A1.3591 (17)O3B—C1B1.3549 (18)
O3A—H1A30.99 (2)O3B—H1B30.94 (2)
C1A—C2A1.396 (2)C1B—C2B1.402 (2)
C1A—C6A1.402 (2)C1B—C6B1.404 (2)
C2A—C3A1.380 (2)C2B—C3B1.376 (2)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C4A1.385 (3)C3B—C4B1.393 (2)
C3A—H3AA0.9300C3B—H3BA0.9300
C4A—C5A1.384 (2)C4B—C5B1.383 (2)
C4A—H4AA0.9300C4B—H4BA0.9300
C5A—C6A1.3933 (19)C5B—C6B1.397 (2)
C5A—H5AA0.9300C5B—H5BA0.9300
C6A—C7A1.495 (2)C6B—C7B1.499 (2)
N1A—C10A1.356 (2)N1B—C9B1.3550 (18)
N1A—C9A1.3566 (19)N1B—C10B1.3584 (18)
N1A—H1NA0.99 (2)N1B—H1NB0.96 (2)
N2A—C9A1.329 (2)N2B—C9B1.3331 (18)
N2A—H2NA0.90 (2)N2B—H2NB0.96 (2)
N2A—H3NA0.93 (2)N2B—H3NB0.930 (19)
C8A—C12A1.366 (2)C8B—C12B1.373 (2)
C8A—C9A1.411 (2)C8B—C9B1.412 (2)
C8A—H8AA0.9300C8B—H8BA0.9300
C10A—C11A1.355 (2)C10B—C11B1.359 (2)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.415 (2)C11B—C12B1.411 (2)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.504 (2)C12B—C13B1.506 (2)
C13A—H13A0.9600C13B—H13D0.9600
C13A—H13B0.9600C13B—H13E0.9600
C13A—H13C0.9600C13B—H13F0.9600
C1A—O3A—H1A3103.3 (12)C1B—O3B—H1B3101.2 (14)
O3A—C1A—C2A118.13 (14)O3B—C1B—C2B117.87 (13)
O3A—C1A—C6A121.82 (13)O3B—C1B—C6B121.75 (13)
C2A—C1A—C6A120.05 (14)C2B—C1B—C6B120.38 (13)
C3A—C2A—C1A119.90 (16)C3B—C2B—C1B119.53 (13)
C3A—C2A—H2AA120.0C3B—C2B—H2BA120.2
C1A—C2A—H2AA120.0C1B—C2B—H2BA120.2
C2A—C3A—C4A120.78 (16)C2B—C3B—C4B121.15 (14)
C2A—C3A—H3AA119.6C2B—C3B—H3BA119.4
C4A—C3A—H3AA119.6C4B—C3B—H3BA119.4
C5A—C4A—C3A119.30 (15)C5B—C4B—C3B119.05 (14)
C5A—C4A—H4AA120.4C5B—C4B—H4BA120.5
C3A—C4A—H4AA120.4C3B—C4B—H4BA120.5
C4A—C5A—C6A121.29 (16)C4B—C5B—C6B121.54 (14)
C4A—C5A—H5AA119.4C4B—C5B—H5BA119.2
C6A—C5A—H5AA119.4C6B—C5B—H5BA119.2
C5A—C6A—C1A118.66 (14)C5B—C6B—C1B118.36 (13)
C5A—C6A—C7A120.15 (14)C5B—C6B—C7B121.13 (13)
C1A—C6A—C7A121.18 (12)C1B—C6B—C7B120.50 (13)
O1A—C7A—O2A123.35 (14)O1B—C7B—O2B123.09 (14)
O1A—C7A—C6A119.44 (12)O1B—C7B—C6B119.41 (13)
O2A—C7A—C6A117.21 (13)O2B—C7B—C6B117.49 (12)
C10A—N1A—C9A122.06 (14)C9B—N1B—C10B121.76 (13)
C10A—N1A—H1NA118.1 (12)C9B—N1B—H1NB117.6 (12)
C9A—N1A—H1NA119.8 (12)C10B—N1B—H1NB120.6 (12)
C9A—N2A—H2NA119.0 (12)C9B—N2B—H2NB120.4 (11)
C9A—N2A—H3NA118.2 (12)C9B—N2B—H3NB119.0 (11)
H2NA—N2A—H3NA122.8 (17)H2NB—N2B—H3NB119.2 (16)
C12A—C8A—C9A120.89 (15)C12B—C8B—C9B120.48 (13)
C12A—C8A—H8AA119.6C12B—C8B—H8BA119.8
C9A—C8A—H8AA119.6C9B—C8B—H8BA119.8
N2A—C9A—N1A118.14 (14)N2B—C9B—N1B117.99 (13)
N2A—C9A—C8A124.06 (15)N2B—C9B—C8B123.61 (13)
N1A—C9A—C8A117.80 (14)N1B—C9B—C8B118.39 (13)
C11A—C10A—N1A121.14 (15)N1B—C10B—C11B121.03 (14)
C11A—C10A—H10A119.4N1B—C10B—H10B119.5
N1A—C10A—H10A119.4C11B—C10B—H10B119.5
C10A—C11A—C12A119.10 (15)C10B—C11B—C12B119.38 (13)
C10A—C11A—H11A120.4C10B—C11B—H11B120.3
C12A—C11A—H11A120.4C12B—C11B—H11B120.3
C8A—C12A—C11A119.01 (15)C8B—C12B—C11B118.95 (13)
C8A—C12A—C13A121.66 (16)C8B—C12B—C13B121.20 (14)
C11A—C12A—C13A119.33 (15)C11B—C12B—C13B119.84 (13)
C12A—C13A—H13A109.5C12B—C13B—H13D109.5
C12A—C13A—H13B109.5C12B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
C12A—C13A—H13C109.5C12B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
O3A—C1A—C2A—C3A178.90 (15)O3B—C1B—C2B—C3B−179.74 (13)
C6A—C1A—C2A—C3A−0.7 (2)C6B—C1B—C2B—C3B0.2 (2)
C1A—C2A—C3A—C4A0.5 (3)C1B—C2B—C3B—C4B0.0 (2)
C2A—C3A—C4A—C5A0.3 (3)C2B—C3B—C4B—C5B−0.3 (2)
C3A—C4A—C5A—C6A−0.9 (3)C3B—C4B—C5B—C6B0.4 (2)
C4A—C5A—C6A—C1A0.6 (2)C4B—C5B—C6B—C1B−0.1 (2)
C4A—C5A—C6A—C7A−178.47 (15)C4B—C5B—C6B—C7B179.23 (13)
O3A—C1A—C6A—C5A−179.39 (14)O3B—C1B—C6B—C5B179.82 (13)
C2A—C1A—C6A—C5A0.2 (2)C2B—C1B—C6B—C5B−0.1 (2)
O3A—C1A—C6A—C7A−0.4 (2)O3B—C1B—C6B—C7B0.4 (2)
C2A—C1A—C6A—C7A179.26 (14)C2B—C1B—C6B—C7B−179.52 (12)
C5A—C6A—C7A—O1A−1.0 (2)C5B—C6B—C7B—O1B−0.6 (2)
C1A—C6A—C7A—O1A−179.99 (14)C1B—C6B—C7B—O1B178.75 (13)
C5A—C6A—C7A—O2A178.56 (14)C5B—C6B—C7B—O2B−179.89 (13)
C1A—C6A—C7A—O2A−0.5 (2)C1B—C6B—C7B—O2B−0.52 (19)
C10A—N1A—C9A—N2A179.75 (14)C10B—N1B—C9B—N2B−179.26 (13)
C10A—N1A—C9A—C8A−0.5 (2)C10B—N1B—C9B—C8B−0.3 (2)
C12A—C8A—C9A—N2A179.56 (14)C12B—C8B—C9B—N2B179.36 (14)
C12A—C8A—C9A—N1A−0.2 (2)C12B—C8B—C9B—N1B0.4 (2)
C9A—N1A—C10A—C11A0.8 (2)C9B—N1B—C10B—C11B0.7 (2)
N1A—C10A—C11A—C12A−0.5 (2)N1B—C10B—C11B—C12B−1.2 (2)
C9A—C8A—C12A—C11A0.5 (2)C9B—C8B—C12B—C11B−0.9 (2)
C9A—C8A—C12A—C13A−178.45 (14)C9B—C8B—C12B—C13B177.87 (14)
C10A—C11A—C12A—C8A−0.2 (2)C10B—C11B—C12B—C8B1.3 (2)
C10A—C11A—C12A—C13A178.81 (14)C10B—C11B—C12B—C13B−177.53 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3A—H1A3···O2A0.99 (2)1.61 (2)2.5310 (16)154 (2)
N1A—H1NA···O1Bi0.99 (2)1.71 (2)2.6965 (17)174 (2)
N2A—H2NA···O1Aii0.90 (2)1.99 (2)2.8645 (19)164 (2)
O3B—H1B3···O2B0.94 (3)1.62 (3)2.5179 (16)158 (2)
N2A—H3NA···O2Bi0.94 (2)1.91 (2)2.8468 (18)178 (2)
N1B—H1NB···O2A0.96 (2)1.76 (2)2.7186 (17)172.7 (17)
N2B—H2NB···O1A0.96 (2)1.84 (2)2.7976 (18)177.0 (16)
N2B—H3NB···O1Biii0.93 (2)1.88 (2)2.8097 (19)174.3 (13)
C8B—H8BA···O2Biv0.932.473.357 (2)159
C10B—H10B···O3B0.932.383.039 (2)128

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) x, y−1, z; (iv) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5564).

References

  • Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr.33, 269–276.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Jin, Z. M., Pan, Y. J., Hu, M. L. & Shen, L. (2001). J. Chem. Crystallogr.31, 191–195.
  • Kvick, Å. & Noordik, J. (1977). Acta Cryst. B33, 2862–2866.
  • Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.
  • Navarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21–22.
  • Qin, J. G., Su, N. B., Dai, C. Y., Yang, C. L., Liu, D. Y., Day, M. W., Wu, B. C. & Chen, C. T. (1999). Polyhedron, 18, 3461–3464.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography