PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m935.
Published online 2010 July 14. doi:  10.1107/S1600536810027236
PMCID: PMC3007448

{2-[2-(Isopropyl­amino)­ethyl­imino­meth­yl]-5-meth­oxy­phenolato}(thio­cyanato­-κN)nickel(II)

Abstract

In the title mononuclear complex, [Ni(C13H19N2O2)(NCS)], the NiII ion is coordinated by one phenolate O atom, one imine N atom, and one amine N atom of a 2-[2-(isopropyl­amino)­ethyl­imino­meth­yl]-5-meth­oxy­phenolate Schiff base ligand, and by one N atom of a thio­cyanate ligand, forming a slightly distorted square-planar geometry.

Related literature

For background to the study of complexes with Schiff bases, see: Hamaker et al. (2010 [triangle]); Wang et al. (2010 [triangle]); Mirkhani et al. (2010 [triangle]); Liu & Yang (2009 [triangle]); Keypour et al. (2009 [triangle]); Adhikary et al. (2009 [triangle]); Peng et al. (2009 [triangle]). For related nickel complexes, see: Wang & Wei (2006 [triangle]); Wang (2007 [triangle]); Arıcı et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m935-scheme1.jpg

Experimental

Crystal data

  • [Ni(C13H19N2O2)(NCS)]
  • M r = 352.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m935-efi1.jpg
  • a = 12.5653 (10) Å
  • b = 11.5197 (9) Å
  • c = 12.6916 (10) Å
  • β = 119.393 (4)°
  • V = 1600.6 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.35 mm−1
  • T = 298 K
  • 0.25 × 0.23 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.729, T max = 0.756
  • 9225 measured reflections
  • 3458 independent reflections
  • 2494 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.160
  • S = 1.07
  • 3458 reflections
  • 196 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.75 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027236/lh5081sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027236/lh5081Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Scientific Research Foundation of Shaanxi University of Technology (project No. SLGQD0708) for financial support.

supplementary crystallographic information

Comment

Schiff bases have often been used as chelating ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). A great number of complexes with Schiff bases have been reported for their interesting structures and applications (Keypour et al., 2009; Adhikary et al., 2009; Peng et al., 2009). We report here the crystal structure of the title complex.

The NiII ion in the title complex is four-coordinated by one phenolate O atom, one imine N atom, and one amine N atom of a Schiff base ligand, and by one N atom of a thiocyanate ligand, forming a slightly distorted square planar geometry (Fig. 1). The bond lengths (Table 1) involving the Ni atom are comparable to those observed in similar nickel complexes (Wang & Wei, 2006; Wang, 2007).

Experimental

4-Methoxysalicylaldehyde (0.1 mmol, 15.2 mg) and N-isopropylethane-1,2-diamine (0.1 mmol, 10.2 mg) were mixed and stirred in methanol (10 ml) for 30 min. Then a methanol solution (5 ml) of nickel nitrate (0.1 mmol, 29.1 mg) was added to the mixture. The final mixture was stirred for another 30 min to give a red solution. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution at room temperature.

Refinement

Atom H2 was located from a difference Fourier map and refined with an N—H distance restraint of 0.90 (1) Å and Uiso(H) = 0.08Å2. Other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). Rotating models were used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Ni(C13H19N2O2)(NCS)]F(000) = 736
Mr = 352.09Dx = 1.461 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2662 reflections
a = 12.5653 (10) Åθ = 2.5–25.3°
b = 11.5197 (9) ŵ = 1.35 mm1
c = 12.6916 (10) ÅT = 298 K
β = 119.393 (4)°Block, red
V = 1600.6 (2) Å30.25 × 0.23 × 0.22 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer3458 independent reflections
Radiation source: fine-focus sealed tube2494 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→16
Tmin = 0.729, Tmax = 0.756k = −14→12
9225 measured reflectionsl = −16→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0583P)2 + 2.8719P] where P = (Fo2 + 2Fc2)/3
3458 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.75 e Å3
1 restraintΔρmin = −0.60 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.94253 (5)0.61180 (5)0.55042 (5)0.0531 (2)
N10.8398 (4)0.6742 (3)0.4000 (3)0.0593 (10)
N21.0753 (4)0.6959 (4)0.5468 (4)0.0646 (11)
N31.0554 (4)0.5515 (4)0.7021 (4)0.0636 (11)
O10.8235 (3)0.5227 (3)0.5535 (3)0.0610 (8)
O20.4509 (3)0.3133 (4)0.4042 (3)0.0836 (12)
S11.24390 (18)0.4763 (2)0.92183 (14)0.1086 (7)
C10.6645 (4)0.5528 (4)0.3496 (4)0.0545 (11)
C20.7132 (4)0.5012 (4)0.4638 (4)0.0530 (11)
C30.6407 (4)0.4205 (4)0.4841 (4)0.0560 (11)
H30.67050.38690.56000.067*
C40.5259 (5)0.3910 (5)0.3922 (5)0.0639 (13)
C50.4792 (5)0.4400 (6)0.2774 (5)0.0773 (16)
H50.40260.41860.21520.093*
C60.5467 (5)0.5184 (5)0.2584 (5)0.0713 (15)
H60.51490.55170.18210.086*
C70.7299 (5)0.6411 (4)0.3259 (4)0.0621 (13)
H70.68990.67770.25100.075*
C80.8943 (6)0.7672 (5)0.3645 (5)0.0822 (17)
H8A0.88160.84160.39250.099*
H8B0.85810.77000.27720.099*
C91.0311 (6)0.7397 (6)0.4236 (5)0.0834 (18)
H9A1.04480.68180.37600.100*
H9B1.07580.80930.42620.100*
C101.1434 (5)0.7834 (5)0.6505 (5)0.0723 (15)
H101.15690.74370.72430.087*
C111.0702 (9)0.8835 (7)0.6392 (8)0.131 (3)
H11A1.11270.93150.70960.196*
H11B0.99380.85900.63170.196*
H11C1.05540.92690.56860.196*
C121.2673 (6)0.8053 (8)0.6660 (6)0.107 (2)
H12A1.25950.83620.59230.161*
H12B1.31220.73380.68540.161*
H12C1.30990.86010.73030.161*
C130.4892 (6)0.2617 (6)0.5198 (6)0.093 (2)
H13A0.56020.21460.54210.139*
H13B0.42460.21420.51590.139*
H13C0.50860.32160.57900.139*
C141.1335 (5)0.5202 (5)0.7934 (5)0.0619 (12)
H21.138 (3)0.645 (4)0.570 (5)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0558 (4)0.0484 (3)0.0500 (3)−0.0051 (3)0.0219 (3)0.0044 (3)
N10.074 (3)0.046 (2)0.053 (2)0.0041 (19)0.028 (2)0.0084 (17)
N20.077 (3)0.053 (2)0.072 (3)−0.005 (2)0.043 (2)−0.005 (2)
N30.057 (2)0.064 (3)0.056 (2)−0.006 (2)0.018 (2)0.006 (2)
O10.0469 (17)0.074 (2)0.0515 (17)−0.0055 (16)0.0156 (14)0.0116 (16)
O20.065 (2)0.101 (3)0.075 (2)−0.028 (2)0.0270 (19)−0.026 (2)
S10.1005 (13)0.1439 (17)0.0576 (8)0.0531 (12)0.0204 (8)0.0087 (10)
C10.049 (2)0.061 (3)0.050 (2)0.011 (2)0.021 (2)0.004 (2)
C20.048 (2)0.058 (3)0.052 (2)0.008 (2)0.023 (2)−0.006 (2)
C30.052 (3)0.063 (3)0.051 (2)−0.003 (2)0.024 (2)−0.002 (2)
C40.053 (3)0.073 (3)0.064 (3)−0.005 (3)0.028 (2)−0.020 (3)
C50.052 (3)0.097 (4)0.061 (3)0.005 (3)0.011 (2)−0.016 (3)
C60.063 (3)0.084 (4)0.053 (3)0.009 (3)0.017 (2)0.005 (3)
C70.071 (3)0.057 (3)0.050 (3)0.022 (2)0.024 (2)0.012 (2)
C80.112 (5)0.059 (3)0.074 (4)−0.006 (3)0.044 (3)0.012 (3)
C90.104 (5)0.076 (4)0.072 (4)−0.026 (3)0.044 (3)0.004 (3)
C100.082 (4)0.058 (3)0.078 (3)−0.021 (3)0.040 (3)−0.010 (3)
C110.164 (8)0.104 (6)0.106 (6)0.043 (6)0.052 (5)−0.027 (5)
C120.086 (5)0.146 (7)0.093 (5)−0.027 (5)0.047 (4)−0.015 (5)
C130.086 (4)0.110 (5)0.085 (4)−0.042 (4)0.044 (4)−0.022 (4)
C140.064 (3)0.063 (3)0.059 (3)0.002 (2)0.030 (3)−0.006 (2)

Geometric parameters (Å, °)

Ni1—O11.830 (3)C5—C61.340 (8)
Ni1—N11.846 (4)C5—H50.9300
Ni1—N31.876 (4)C6—H60.9300
Ni1—N21.949 (4)C7—H70.9300
N1—C71.290 (6)C8—C91.534 (8)
N1—C81.457 (7)C8—H8A0.9700
N2—C91.469 (7)C8—H8B0.9700
N2—C101.541 (6)C9—H9A0.9700
N2—H20.91 (5)C9—H9B0.9700
N3—C141.148 (6)C10—C111.436 (9)
O1—C21.315 (5)C10—C121.492 (8)
O2—C41.361 (6)C10—H100.9800
O2—C131.430 (7)C11—H11A0.9600
S1—C141.618 (5)C11—H11B0.9600
C1—C21.400 (6)C11—H11C0.9600
C1—C61.416 (7)C12—H12A0.9600
C1—C71.429 (7)C12—H12B0.9600
C2—C31.411 (7)C12—H12C0.9600
C3—C41.380 (7)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.395 (8)C13—H13C0.9600
O1—Ni1—N194.39 (16)C1—C7—H7117.4
O1—Ni1—N389.12 (16)N1—C8—C9106.3 (4)
N1—Ni1—N3176.32 (19)N1—C8—H8A110.5
O1—Ni1—N2175.67 (17)C9—C8—H8A110.5
N1—Ni1—N287.39 (19)N1—C8—H8B110.5
N3—Ni1—N289.03 (19)C9—C8—H8B110.5
C7—N1—C8119.3 (4)H8A—C8—H8B108.7
C7—N1—Ni1126.5 (4)N2—C9—C8109.8 (5)
C8—N1—Ni1114.2 (4)N2—C9—H9A109.7
C9—N2—C10116.5 (4)C8—C9—H9A109.7
C9—N2—Ni1108.3 (3)N2—C9—H9B109.7
C10—N2—Ni1115.3 (3)C8—C9—H9B109.7
C9—N2—H2113 (4)H9A—C9—H9B108.2
C10—N2—H297 (4)C11—C10—C12116.9 (7)
Ni1—N2—H2106 (4)C11—C10—N2112.3 (5)
C14—N3—Ni1173.1 (4)C12—C10—N2109.2 (5)
C2—O1—Ni1127.7 (3)C11—C10—H10105.8
C4—O2—C13119.0 (4)C12—C10—H10105.8
C2—C1—C6118.6 (5)N2—C10—H10105.8
C2—C1—C7121.1 (4)C10—C11—H11A109.5
C6—C1—C7120.3 (4)C10—C11—H11B109.5
O1—C2—C1123.8 (4)H11A—C11—H11B109.5
O1—C2—C3117.8 (4)C10—C11—H11C109.5
C1—C2—C3118.4 (4)H11A—C11—H11C109.5
C4—C3—C2120.6 (5)H11B—C11—H11C109.5
C4—C3—H3119.7C10—C12—H12A109.5
C2—C3—H3119.7C10—C12—H12B109.5
O2—C4—C3124.2 (5)H12A—C12—H12B109.5
O2—C4—C5115.1 (5)C10—C12—H12C109.5
C3—C4—C5120.8 (5)H12A—C12—H12C109.5
C6—C5—C4118.8 (5)H12B—C12—H12C109.5
C6—C5—H5120.6O2—C13—H13A109.5
C4—C5—H5120.6O2—C13—H13B109.5
C5—C6—C1122.8 (5)H13A—C13—H13B109.5
C5—C6—H6118.6O2—C13—H13C109.5
C1—C6—H6118.6H13A—C13—H13C109.5
N1—C7—C1125.2 (4)H13B—C13—H13C109.5
N1—C7—H7117.4N3—C14—S1179.7 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5081).

References

  • Adhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem.62, 3573–3582.
  • Arıcı, C., Ercan, F., Atakol, O., Akay, A. & Ülkü, D. (1999). Acta Cryst. C55, 928–930.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr.40, 34–39.
  • Keypour, H., Azadbakht, R., Rudbari, H. A., Heydarinekoo, A. & Khavasi, H. (2009). Transition Met. Chem.34, 835–839.
  • Liu, Y.-C. & Yang, Z.-Y. (2009). Eur. J. Med. Chem.44, 5080–5089. [PubMed]
  • Mirkhani, V., Kia, R., Milic, D., Vartooni, A. R. & Matkovic-Calogovic, D. (2010). Transition Met. Chem.35, 81–87.
  • Peng, S.-J., Hou, H.-Y. & Zhou, C.-S. (2009). Synth. React. Inorg. Met. Org. Nano-Met. Chem.39, 462–466.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, S.-X. (2007). Acta Cryst. E63, m1946.
  • Wang, F.-W. & Wei, Y.-J. (2006). Acta Cryst. E62, m599–m600.
  • Wang, W., Zhang, F. X., Li, J. & Hu, W. B. (2010). Russ. J. Coord. Chem.36, 33–36.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography