PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1901–o1902.
Published online 2010 July 3. doi:  10.1107/S1600536810025055
PMCID: PMC3007444

1,7-Dimethyl­penta­cyclo­[5.4.0.02,6.03,10.05,9]undecane-8,11-dione

Abstract

The structure of the title compound, C13H14O2, a penta­cyclo­undecane cage derivative, exhibits unusual Csp 3—Csp 3 single-bond lengths ranging from 1.505 (3) to 1.607 (2) Å and strained bond angles as small as 88.7 (1)° and as large as 121.0 (2)°. In this meso compound, an inter­nal non-crystallographic mirror plane exists, bis­ecting the mol­ecule. In the crystal, weak C—H(...)O hydrogen bonds link the mol­ecules into an infinite spiral about a twofold screw axis along the [100] direction.

Related literature

For related literature and examples of PCU cage structures exhibiting C—C bond lengths that deviate from the norm, see: Flippen-Anderson et al. (1991 [triangle]); Bott et al. (1998 [triangle]); Linden et al. (2005 [triangle]); Kruger et al. (2006 [triangle]). For the crystal packing of analogous PCU cage structures, see: Kruger et al. (2006 [triangle]); Boyle et al. (2007a [triangle],b [triangle]). For the synthesis, see: Mehta et al. (1981 [triangle]). For hydrogen bonding, see: Desiraju et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1901-scheme1.jpg

Experimental

Crystal data

  • C13H14O2
  • M r = 202.24
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1901-efi1.jpg
  • a = 7.7914 (2) Å
  • b = 8.2149 (3) Å
  • c = 15.4830 (5) Å
  • V = 991.00 (5) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.72 mm−1
  • T = 173 K
  • 0.32 × 0.25 × 0.21 mm

Data collection

  • Bruker Kappa DUO APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.702, T max = 0.753
  • 4922 measured reflections
  • 1055 independent reflections
  • 1044 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.090
  • S = 1.06
  • 1055 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810025055/hb5509sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025055/hb5509Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by grants from the National Research Foundation (South Africa), GUN 2046819, and the University of KwaZulu-Natal.

supplementary crystallographic information

Comment

As part of an ongoing study of the crystal structures and chemical reactivity of polycyclic pentacycloundecane (PCU) cage derivatives, the structure of the title compound, (I), was obtained (Scheme 1). Although the compound is known (Mehta et al., 1981), its crystal structure has not been reported. Previous studies showed that PCU cage derivatives normally display C—C bond lengths which deviate from the expected value of 1.54 Å (see related literature). Similar phenomneon on the C—C bond lengths for this structure is observed, as the lengths of 17 Csp3—Csp3 single bonds range from 1.505 (3) Å to 1.607 (2) Å, with the bond between C10—C13 being the shortest, while that between C5—C10 is the longest (see Table 1). The labelling scheme and molecular structure is presented in Figure 1. The atoms C5, C6, C11 and C10 form a slightly irregular square with r.m.s. deviation of fitted atoms 0.0007 Å and is a very strained system. The tetrahedral bond angles around C10 are the most strained with the smallest angle of 88.7 (1)° (C5—C10—C11) and the biggest angle of 121.0 (2)° (C11—C10—C13), deviating from the ideal tetrahedral angle of 109.5°. Other selected carbon atoms, which define the cage conformation and which are coplanar with r.m.s. deviation of the fitted atoms smaller than 0.01 Å, are the following (with r.m.s. deviation of the fitted atoms in bracket): C10, C5, C4 and C9 (0.0034 Å); C4, C9, C8 and C3 (0.0010 Å); C3, C8, C7 and C2 (0.0019 Å); C2, C7, C11 and C6 (0.0004 Å). In the molecule of this meso compound an internal mirror plane exists, bisecting C1 and the middle points of bonds C8—C3, C11—C6 and C10—C5. We noted a number of weak hydrogen bonds of the type C—H···O=C presented in this structure (Desiraju et al., 1999) (see Table 2). The molecules form a infinite right-hand spiral about a two fold screw-axis along the [100] direction via hydrogen bond C3—H3···O2 (see Figure 2).

Experimental

In a 250 ml round-bottomed flask covered with tin foil was placed 2,3-dimethyl hydroquinone (4.00 g, 0.03 mmol), sodium chlorate (1.73 g, 0.01 mmol), 2% H2SO4 (36 ml) and 50 mg of vanadium pentoxide (catalyst). The mixture was stirred overnight, and the product, 2,3-dimethylbenzoquinone, was extracted with dichloromethane, dried over sodium sulfate, filtered and the filterate concentrated in vacuo to obtain 3.00 g (76%). To a vigorously stirring solution of the dried product (3.00 g, 0.02 mmol) in toluene (12 ml) cooled to 273 K, freshly cracked cyclopentadiene (1.67 g, 0.025 mmol) was added. The mixture was kept at 273 K for 4 h, after which the solution was allowed to attain ambient temperature over night. The solution was poured into an evaporating dish and placed in a fumehood to evaporate the toluene, yielding the adduct as a crude brown oil (4.20 g). Without further purification, the material was dissolved in ethyl acetate and exposed to sunlight until a clear solution was obtained (two weeks). The solvent was removed in vacuo to obtain a crude product, which was purified on silica gel, using a mobile phase of 6:4 hexane/ethyl acetate. The title compound was obtained as a pure white crystalline solid (3.20 g, 72%), mp 381–382 K. 1H NMR [CDCl3, 400 MHz]: δ = 0.99 (s, 6 H, CH3), 1.85 (d, 1 H, J= 11.2 Hz, CH2), 1.99 (d, 1 H, J= 11.1 Hz, CH2), 2.68 (s, 2 H, CH), 2.73 (s, 2 H, CH), 2.81 (s, 2 H, CH). 13C NMR [CDCl3, 100 MHz]: δ = 11.4 (q), 41.1 (t), 43.3 (d), 44.2 (d), 54.7 (d), 213.8 (s). IR (ATR): 2958, 1741, 1453,1282, 1073, 1023, 903, 869, 660 and 457 cm-1. Colourless prisms of (I) were grown by slow evaporation of a solution of the title compound in methanol, at ambient temperature. The synthesis is summarised in Fig. 3.

Refinement

The locations of the hydrogen atoms were found in a difference map and then positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 1.00 (CH), 0.99 (CH2), or 0.98 (CH3). They were then refined with a riding model with Uiso(H) = 1.5Ueq(CH3) and Uiso(H) = 1.2Ueq(X) for X = CH or CH2. When the data were unmerged, the Flack absolute structure parameter refined to -0.07 with s.u. 0.25. Because of the large s.u., in the final refinement, the Friedel pairs were merged.

Figures

Fig. 1.
View of the molecular structure of (I) with non-H atoms drawn with 40% probability displacement ellipsoids and H atoms are shown as open circles.
Fig. 2.
Projection viewed down the b axis of (I) showing the spirals up along the 2-fold screw axis in the [100] direction. Both the weak hydrogen bonds C3—H3···O2 and C2—H2···O2 are shown as dotted ...
Fig. 3.
Preparation scheme for (I)

Crystal data

C13H14O2Dx = 1.356 Mg m3
Mr = 202.24Melting point: 382 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 4922 reflections
a = 7.7914 (2) Åθ = 5.7–68.4°
b = 8.2149 (3) ŵ = 0.72 mm1
c = 15.4830 (5) ÅT = 173 K
V = 991.00 (5) Å3Prism, colourless
Z = 40.32 × 0.25 × 0.21 mm
F(000) = 432

Data collection

Bruker Kappa DUO APEXII diffractometer1055 independent reflections
Radiation source: fine-focus sealed tube1044 reflections with I > 2σ(I)
graphiteRint = 0.020
0.5° [var phi] scans and ω scansθmax = 68.4°, θmin = 5.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)h = −9→9
Tmin = 0.702, Tmax = 0.753k = −9→9
4922 measured reflectionsl = −18→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090w = 1/[σ2(Fo2) + (0.0627P)2 + 0.1901P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1055 reflectionsΔρmax = 0.21 e Å3
137 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0178 (18)
Primary atom site location: structure-invariant direct methods

Special details

Experimental. Half sphere of data collected using COLLECT strategy (Nonius, 2000). Crystal to detector distance = 30 mm; combination of [var phi] and ω scans of 0.5°, 40 s per °, 2 iterations.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.7584 (2)0.32372 (19)0.54950 (9)0.0395 (4)
C10.4669 (2)0.6969 (2)0.36778 (12)0.0255 (4)
H1A0.43950.79120.40510.031*
H1B0.38580.69150.31870.031*
O21.05692 (19)0.5921 (2)0.41443 (11)0.0381 (4)
C20.4768 (2)0.5374 (2)0.41804 (11)0.0233 (4)
H20.36740.50190.44610.028*
C30.6306 (2)0.5612 (2)0.47985 (11)0.0232 (4)
H30.59880.60880.53710.028*
C40.7082 (2)0.3924 (2)0.48546 (12)0.0251 (4)
C50.7092 (2)0.3279 (2)0.39345 (12)0.0229 (4)
C60.5531 (2)0.4167 (2)0.35149 (12)0.0231 (4)
H60.46970.34740.31900.028*
C70.6546 (2)0.6948 (2)0.33893 (11)0.0224 (4)
H70.69120.78890.30230.027*
C80.7553 (2)0.6726 (2)0.42436 (12)0.0229 (4)
H80.78720.77720.45320.027*
C90.9079 (2)0.5714 (2)0.39604 (12)0.0248 (4)
C100.8361 (2)0.4397 (2)0.33708 (11)0.0231 (4)
C110.6756 (2)0.5243 (2)0.29697 (11)0.0230 (4)
H110.66300.51810.23280.028*
C120.7267 (3)0.1443 (2)0.38573 (13)0.0316 (5)
H12A0.72600.11330.32460.047*
H12B0.63060.09150.41540.047*
H12C0.83500.10960.41220.047*
C130.9672 (3)0.3567 (3)0.28080 (13)0.0334 (5)
H13A0.91040.27400.24520.050*
H13B1.05410.30460.31720.050*
H13C1.02230.43740.24330.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0546 (10)0.0372 (8)0.0267 (7)0.0111 (8)−0.0061 (7)0.0058 (6)
C10.0229 (9)0.0265 (9)0.0269 (9)0.0046 (7)−0.0001 (7)0.0022 (8)
O20.0216 (7)0.0364 (8)0.0564 (10)−0.0003 (6)−0.0065 (7)−0.0079 (7)
C20.0193 (8)0.0247 (9)0.0259 (8)0.0007 (7)0.0027 (7)0.0016 (7)
C30.0255 (8)0.0245 (9)0.0195 (8)0.0020 (8)0.0024 (7)−0.0010 (7)
C40.0250 (8)0.0264 (9)0.0240 (8)0.0009 (8)0.0010 (7)0.0017 (7)
C50.0237 (9)0.0195 (9)0.0256 (9)−0.0004 (7)0.0012 (7)−0.0011 (7)
C60.0218 (8)0.0240 (9)0.0235 (8)−0.0016 (8)−0.0017 (7)−0.0019 (7)
C70.0231 (9)0.0208 (8)0.0232 (8)−0.0001 (8)−0.0001 (7)0.0032 (7)
C80.0227 (8)0.0201 (8)0.0257 (9)−0.0009 (8)−0.0029 (8)−0.0014 (7)
C90.0224 (9)0.0241 (9)0.0280 (9)−0.0012 (8)0.0004 (7)0.0030 (7)
C100.0215 (9)0.0240 (9)0.0237 (8)0.0016 (8)0.0023 (7)−0.0003 (7)
C110.0236 (9)0.0255 (9)0.0200 (8)0.0001 (8)−0.0001 (7)−0.0013 (7)
C120.0421 (11)0.0204 (9)0.0324 (9)0.0009 (9)0.0015 (9)−0.0011 (7)
C130.0315 (11)0.0344 (11)0.0344 (9)0.0057 (9)0.0092 (9)−0.0020 (9)

Geometric parameters (Å, °)

O1—C41.206 (2)C6—H61.0000
C1—C21.525 (3)C7—C81.549 (2)
C1—C71.529 (2)C7—C111.553 (3)
C1—H1A0.9900C7—H71.0000
C1—H1B0.9900C8—C91.515 (3)
O2—C91.207 (3)C8—H81.0000
C2—C31.546 (2)C9—C101.523 (3)
C2—C61.549 (2)C10—C131.505 (3)
C2—H21.0000C10—C111.560 (2)
C3—C41.515 (3)C11—H111.0000
C3—C81.587 (2)C12—H12A0.9800
C3—H31.0000C12—H12B0.9800
C4—C51.520 (2)C12—H12C0.9800
C5—C121.519 (2)C13—H13A0.9800
C5—C61.560 (2)C13—H13B0.9800
C5—C101.607 (2)C13—H13C0.9800
C6—C111.551 (3)
C2—C1—C795.26 (14)C1—C7—H7115.5
C2—C1—H1A112.7C8—C7—H7115.5
C7—C1—H1A112.7C11—C7—H7115.5
C2—C1—H1B112.7C9—C8—C7102.44 (14)
C7—C1—H1B112.7C9—C8—C3108.72 (15)
H1A—C1—H1B110.2C7—C8—C3102.71 (14)
C1—C2—C3104.26 (15)C9—C8—H8113.9
C1—C2—C6103.29 (14)C7—C8—H8113.9
C3—C2—C6101.25 (14)C3—C8—H8113.9
C1—C2—H2115.4O2—C9—C8127.53 (19)
C3—C2—H2115.4O2—C9—C10126.49 (19)
C6—C2—H2115.4C8—C9—C10105.96 (15)
C4—C3—C2103.24 (14)C13—C10—C9114.82 (16)
C4—C3—C8108.33 (14)C13—C10—C11121.02 (15)
C2—C3—C8102.26 (13)C9—C10—C11102.51 (14)
C4—C3—H3114.0C13—C10—C5118.23 (16)
C2—C3—H3114.0C9—C10—C5107.86 (14)
C8—C3—H3114.0C11—C10—C588.69 (13)
O1—C4—C3127.20 (18)C6—C11—C7102.81 (13)
O1—C4—C5127.29 (18)C6—C11—C1091.31 (13)
C3—C4—C5105.51 (15)C7—C11—C10108.66 (14)
C12—C5—C4114.86 (16)C6—C11—H11116.8
C12—C5—C6120.11 (16)C7—C11—H11116.8
C4—C5—C6102.91 (15)C10—C11—H11116.8
C12—C5—C10117.97 (16)C5—C12—H12A109.5
C4—C5—C10108.24 (14)C5—C12—H12B109.5
C6—C5—C1089.23 (13)H12A—C12—H12B109.5
C2—C6—C11103.48 (14)C5—C12—H12C109.5
C2—C6—C5108.76 (14)H12A—C12—H12C109.5
C11—C6—C590.77 (13)H12B—C12—H12C109.5
C2—C6—H6116.8C10—C13—H13A109.5
C11—C6—H6116.8C10—C13—H13B109.5
C5—C6—H6116.8H13A—C13—H13B109.5
C1—C7—C8103.67 (14)C10—C13—H13C109.5
C1—C7—C11103.47 (15)H13A—C13—H13C109.5
C8—C7—C11101.38 (14)H13B—C13—H13C109.5
C7—C1—C2—C352.94 (15)C2—C3—C8—C7−0.35 (17)
C7—C1—C2—C6−52.54 (16)C7—C8—C9—O2134.3 (2)
C1—C2—C3—C4−145.63 (14)C3—C8—C9—O2−117.5 (2)
C6—C2—C3—C4−38.63 (17)C7—C8—C9—C10−44.16 (18)
C1—C2—C3—C8−33.19 (16)C3—C8—C9—C1064.06 (18)
C6—C2—C3—C873.81 (15)O2—C9—C10—C13−15.9 (3)
C2—C3—C4—O1−136.5 (2)C8—C9—C10—C13162.55 (16)
C8—C3—C4—O1115.6 (2)O2—C9—C10—C11−149.1 (2)
C2—C3—C4—C543.41 (18)C8—C9—C10—C1129.38 (17)
C8—C3—C4—C5−64.51 (17)O2—C9—C10—C5118.2 (2)
O1—C4—C5—C1218.7 (3)C8—C9—C10—C5−63.30 (18)
C3—C4—C5—C12−161.21 (16)C12—C5—C10—C13−0.9 (3)
O1—C4—C5—C6151.1 (2)C4—C5—C10—C13131.62 (18)
C3—C4—C5—C6−28.88 (18)C6—C5—C10—C13−125.04 (17)
O1—C4—C5—C10−115.4 (2)C12—C5—C10—C9−133.26 (18)
C3—C4—C5—C1064.62 (18)C4—C5—C10—C9−0.7 (2)
C1—C2—C6—C1133.43 (17)C6—C5—C10—C9102.62 (16)
C3—C2—C6—C11−74.33 (16)C12—C5—C10—C11124.02 (18)
C1—C2—C6—C5128.94 (15)C4—C5—C10—C11−103.44 (15)
C3—C2—C6—C521.18 (17)C6—C5—C10—C11−0.10 (12)
C12—C5—C6—C2133.27 (18)C2—C6—C11—C7−0.07 (17)
C4—C5—C6—C24.12 (18)C5—C6—C11—C7−109.58 (14)
C10—C5—C6—C2−104.42 (15)C2—C6—C11—C10109.40 (14)
C12—C5—C6—C11−122.20 (18)C5—C6—C11—C10−0.10 (12)
C4—C5—C6—C11108.64 (14)C1—C7—C11—C6−33.26 (17)
C10—C5—C6—C110.10 (12)C8—C7—C11—C673.97 (16)
C2—C1—C7—C8−52.87 (16)C1—C7—C11—C10−129.09 (15)
C2—C1—C7—C1152.62 (15)C8—C7—C11—C10−21.86 (17)
C1—C7—C8—C9146.37 (15)C13—C10—C11—C6122.67 (18)
C11—C7—C8—C939.30 (17)C9—C10—C11—C6−107.91 (14)
C1—C7—C8—C333.62 (18)C5—C10—C11—C60.10 (12)
C11—C7—C8—C3−73.44 (16)C13—C10—C11—C7−133.34 (17)
C4—C3—C8—C90.2 (2)C9—C10—C11—C7−3.91 (17)
C2—C3—C8—C9−108.38 (15)C5—C10—C11—C7104.10 (14)
C4—C3—C8—C7108.24 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O2i1.002.583.303 (2)129
C3—H3···O2ii1.002.593.335 (2)131

Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5509).

References

  • Bott, S. G., Marchand, A. P., Alihodzic, S. & Kumar, K. A. (1998). J. Chem. Crystallogr.28, 251–258.
  • Boyle, G. A., Govender, T., Karpoormath, R. & Kruger, H. G. (2007a). Acta Cryst. E63, o3977.
  • Boyle, G. A., Govender, T., Karpoormath, R. & Kruger, H. G. (2007b). Acta Cryst. E63, o4797.
  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology. IUCr Monographs on Crystallography. Oxford University Press.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flippen-Anderson, J. L., George, C., Gilardi, R., Zajac, W. W., Walters, T. R., Marchand, A., Dave, P. R. & Arney, B. E. (1991). Acta Cryst. C47, 813–817.
  • Kruger, H. G., Rademeyer, M. & Ramdhani, R. (2006). Acta Cryst. E62, o268–o270.
  • Linden, A., Romański, J., Mlostoń, G. & Heimgartner, H. (2005). Acta Cryst. C61, o221–o226. [PubMed]
  • Mehta, G., Srikrishna, A., Reddy, A. V. & Nair, M. S. (1981). Tetrahedron, 37, 4543–4559.
  • Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography