PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2078.
Published online 2010 July 21. doi:  10.1107/S1600536810028217
PMCID: PMC3007434

(2Z)-2-[(2,3-Dimethyl­phen­yl)imino]-1,2-diphenyl­ethanone

Abstract

In the title compound, C22H19NO, the 2,3-dimethyl­anilinic group is planar with an r.m.s. deviation of 0.0226 Å. The phenyl rings with the carbonyl and imine substituents are also planar with r.m.s. deviations of 0.0019 and 0.0048 Å, respectively. These phenyl rings are oriented at dihedral angles of 74.70 (5) and 79.43 (5)°, respectively, with the 2,3-dimethyl­anilinic group, whereas the dihedral angle between them is 88.28 (4)°. Weak intra­molecular C—H(...)N hydrogen bonding occurs and completes an S(5) ring motif in the mol­ecule. In the crystal, weak π–π inter­actions are present between the carbonyl-containing phenyl rings at a centroid–centroid distance of 3.5958 (12) Å. C—H(...)π inter­actions between the 2,3-dimethyl­anilinic and the carbonyl-containing phenyl rings are also present, where the C—H group is from the former.

Related literature

For title compound has been characterized as part of our programme for the synthesis of Schiff bases derived from 2,3-dimethylaniline, see: Hussain et al. (2010 [triangle]); Sarfraz et al. (2010 [triangle]); Tahir et al. (2010a [triangle],b [triangle]); Tariq et al. (2010 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2078-scheme1.jpg

Experimental

Crystal data

  • C22H19NO
  • M r = 313.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2078-efi1.jpg
  • a = 13.3342 (3) Å
  • b = 8.7021 (2) Å
  • c = 15.6944 (5) Å
  • β = 108.448 (1)°
  • V = 1727.52 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 296 K
  • 0.32 × 0.25 × 0.14 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.982, T max = 0.988
  • 13196 measured reflections
  • 3116 independent reflections
  • 2296 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.119
  • S = 1.02
  • 3116 reflections
  • 219 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810028217/bq2227sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028217/bq2227Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

The title compound (I, Fig. 1) is being reported in continuation to synthesize various Schiff bases (Hussain et al., 2010; (Sarfraz et al., 2010; Tahir et al., 2010a; Tahir et al., 2010b; Tariq et al., 2010) of 2,3-dimethylaniline.

The crystal structures of (II) i.e, 2,3-dimethyl-N-[(E)-4-nitrobenzylidene]aniline (Tariq et al., 2010), (III) N-[(E)-4-chlorobenzylidene]-2,3-dimethylaniline (Tahir et al., 2010a), (IV) (E)-2,3-dimethyl-N-(2-nitrobenzylidene)aniline (Tahir et al., 2010b), (V) 2,3-dimethyl-N-[(E)-2,4,5-trimethoxybenzylidene]aniline (Hussain et al., 2010) and (VI) N-{(E)-[4-(dimethylamino)phenyl]methylidene}-2,3-dimethylaniline (Sarfraz et al., 2010) have been published previously, which contain 2,3-dimethylaniline moiety. The title compound differs from these due to substitutions at the N-atom of 2,3-dimethylaniline.

In (I), the 2,3-dimethylanilinic group A (C1—C8/N1), the phenyl rings B (C11—C16) and C (C18—C23) are planar with r. m. s. deviation of 0.0226 Å, 0.0048 Å and 0.0019 Å, respectively. The dihedral angle between A/B, A/C and B/C is 79.43 (5)°, 74.70 (5)° and 88.28 (4)°, respectively. The central group D (C10/C17/O2) is oriented at 87.95 (9) ° and 5.37 (21)° with phenyl rings B and C, respectively. The title compound essentially consists of monomers. Weak intramolecular H-bonding of C—H···N type (Table 1, Fig. 1) exists and complete an S(5) ring motif (Bernstein et al., 1995). There exists π–π interaction between the centroids of phenyl rings C at a distance of 3.5958 (12) Å [symmetry code: 1 - x, 1 - y, - z]. The C—H···π interaction (Table 1) also play an important role in stabilizing the molecules.

Experimental

Equimolar quantities of 2,3-dimethylaniline and benzil were refluxed in methanol for 1 h. The yellow solution obtained was kept at room temperature to afford yellow prisms in 12 h.

Refinement

All H-atoms were positioned geometrically (C–H = 0.93, 0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.2 for aryl and x = 1.5 for methyl H-atoms.

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The dotted line represents the intramolecular H-bonding.

Crystal data

C22H19NOF(000) = 664
Mr = 313.38Dx = 1.205 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2296 reflections
a = 13.3342 (3) Åθ = 1.8–25.3°
b = 8.7021 (2) ŵ = 0.07 mm1
c = 15.6944 (5) ÅT = 296 K
β = 108.448 (1)°Prism, yellow
V = 1727.52 (8) Å30.32 × 0.25 × 0.14 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer3116 independent reflections
Radiation source: fine-focus sealed tube2296 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 8.20 pixels mm-1θmax = 25.3°, θmin = 1.8°
ω scansh = −11→16
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −10→10
Tmin = 0.982, Tmax = 0.988l = −18→18
13196 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0557P)2 + 0.2716P] where P = (Fo2 + 2Fc2)/3
3116 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.33949 (10)0.06238 (15)−0.06560 (8)0.0853 (5)
N10.15316 (9)0.23294 (14)−0.01278 (8)0.0570 (4)
C10.14965 (10)0.34191 (17)−0.08138 (10)0.0534 (5)
C20.13588 (10)0.49776 (18)−0.06490 (10)0.0557 (5)
C30.12551 (11)0.60342 (18)−0.13434 (11)0.0621 (5)
C40.12628 (13)0.5525 (2)−0.21774 (11)0.0691 (6)
C50.13790 (14)0.3994 (2)−0.23354 (11)0.0708 (6)
C60.15002 (12)0.29351 (19)−0.16559 (10)0.0632 (5)
C70.13588 (14)0.5497 (2)0.02641 (11)0.0749 (7)
C80.11407 (16)0.7732 (2)−0.11967 (14)0.0891 (7)
C100.23292 (11)0.14528 (16)0.02009 (9)0.0501 (5)
C110.23229 (11)0.02975 (17)0.08880 (9)0.0530 (5)
C120.32515 (13)−0.03892 (19)0.14156 (11)0.0663 (6)
C130.32375 (16)−0.1451 (2)0.20646 (12)0.0810 (7)
C140.23045 (18)−0.1860 (2)0.21891 (13)0.0847 (8)
C150.13777 (16)−0.1198 (2)0.16724 (12)0.0811 (7)
C160.13822 (13)−0.0116 (2)0.10313 (11)0.0656 (6)
C170.33233 (11)0.15133 (18)−0.00799 (10)0.0558 (5)
C180.41638 (11)0.25999 (18)0.03844 (10)0.0575 (5)
C190.51182 (13)0.2572 (2)0.01995 (14)0.0829 (7)
C200.59158 (15)0.3559 (3)0.06489 (19)0.1088 (10)
C210.57832 (18)0.4566 (3)0.1268 (2)0.1134 (10)
C220.48486 (16)0.4608 (2)0.14604 (14)0.0894 (8)
C230.40401 (12)0.36191 (19)0.10183 (11)0.0652 (6)
H40.118800.62314−0.263790.0830*
H50.137600.36700−0.290090.0849*
H60.158420.18989−0.176160.0758*
H7A0.201710.599630.056760.1123*
H7B0.127240.462300.060750.1123*
H7C0.078680.620360.020050.1123*
H8A0.113300.82866−0.172760.1336*
H8B0.172500.80753−0.069870.1336*
H8C0.049160.79136−0.107070.1336*
H120.38899−0.013090.133060.0796*
H130.38668−0.189050.241940.0972*
H140.22976−0.258440.262270.1016*
H150.07422−0.148030.175510.0974*
H160.075120.033970.069240.0787*
H190.521560.18919−0.022450.0995*
H200.655490.353780.052800.1303*
H210.632920.523040.156240.1360*
H220.476010.529480.188470.1072*
H230.340680.364040.114890.0783*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0909 (9)0.0965 (10)0.0757 (8)0.0177 (7)0.0368 (7)−0.0170 (7)
N10.0486 (7)0.0597 (7)0.0594 (8)−0.0032 (6)0.0124 (6)−0.0042 (6)
C10.0406 (7)0.0582 (9)0.0551 (8)−0.0017 (6)0.0063 (6)−0.0042 (7)
C20.0390 (7)0.0623 (9)0.0591 (9)0.0028 (6)0.0061 (6)−0.0078 (7)
C30.0453 (8)0.0602 (9)0.0688 (10)0.0036 (7)0.0008 (7)−0.0033 (8)
C40.0623 (10)0.0705 (11)0.0626 (10)0.0005 (8)0.0027 (8)0.0070 (8)
C50.0731 (10)0.0782 (12)0.0524 (9)−0.0019 (9)0.0076 (8)−0.0075 (8)
C60.0651 (10)0.0595 (9)0.0571 (9)−0.0011 (7)0.0082 (7)−0.0111 (8)
C70.0703 (11)0.0791 (12)0.0745 (11)0.0095 (9)0.0219 (9)−0.0162 (9)
C80.0879 (13)0.0651 (11)0.0983 (14)0.0132 (10)0.0067 (11)−0.0013 (10)
C100.0482 (8)0.0526 (8)0.0472 (8)−0.0039 (6)0.0120 (6)−0.0107 (6)
C110.0563 (8)0.0545 (8)0.0489 (8)−0.0050 (7)0.0176 (7)−0.0105 (6)
C120.0619 (10)0.0688 (10)0.0680 (10)0.0039 (8)0.0201 (8)0.0054 (8)
C130.0876 (13)0.0823 (12)0.0716 (11)0.0145 (10)0.0230 (10)0.0160 (10)
C140.1126 (16)0.0796 (12)0.0691 (12)−0.0015 (12)0.0389 (11)0.0111 (10)
C150.0891 (13)0.0915 (13)0.0752 (12)−0.0198 (11)0.0436 (10)−0.0038 (10)
C160.0601 (9)0.0762 (11)0.0629 (10)−0.0075 (8)0.0230 (8)−0.0069 (8)
C170.0573 (9)0.0609 (9)0.0513 (8)0.0110 (7)0.0202 (7)0.0044 (7)
C180.0468 (8)0.0661 (9)0.0608 (9)0.0062 (7)0.0188 (7)0.0215 (8)
C190.0549 (10)0.0988 (14)0.1014 (14)0.0199 (10)0.0338 (10)0.0461 (12)
C200.0447 (10)0.131 (2)0.146 (2)0.0058 (13)0.0237 (13)0.0791 (18)
C210.0634 (14)0.1087 (19)0.136 (2)−0.0285 (12)−0.0142 (13)0.0608 (17)
C220.0806 (13)0.0796 (13)0.0869 (14)−0.0236 (10)−0.0033 (10)0.0119 (10)
C230.0568 (9)0.0702 (10)0.0652 (10)−0.0108 (8)0.0143 (8)0.0057 (8)

Geometric parameters (Å, °)

O1—C171.217 (2)C20—C211.361 (4)
N1—C11.4243 (19)C21—C221.373 (3)
N1—C101.2775 (19)C22—C231.382 (3)
C1—C21.404 (2)C4—H40.9300
C1—C61.389 (2)C5—H50.9300
C2—C31.399 (2)C6—H60.9300
C2—C71.503 (2)C7—H7A0.9600
C3—C41.385 (2)C7—H7B0.9600
C3—C81.510 (2)C7—H7C0.9600
C4—C51.373 (2)C8—H8A0.9600
C5—C61.380 (2)C8—H8B0.9600
C10—C111.476 (2)C8—H8C0.9600
C10—C171.524 (2)C12—H120.9300
C11—C121.388 (2)C13—H130.9300
C11—C161.390 (2)C14—H140.9300
C12—C131.380 (2)C15—H150.9300
C13—C141.366 (3)C16—H160.9300
C14—C151.372 (3)C19—H190.9300
C15—C161.379 (2)C20—H200.9300
C17—C181.471 (2)C21—H210.9300
C18—C191.392 (2)C22—H220.9300
C18—C231.381 (2)C23—H230.9300
C19—C201.375 (3)
O1···N13.2197 (19)C11···H14iv2.8900
O1···C63.222 (2)C11···H8Bv3.0500
O1···C19i3.359 (2)C12···H14iv3.0800
O1···H62.7200C14···H7Av3.0800
O1···H192.5600C14···H23vi3.0800
O1···H19i2.9200C17···H62.9300
N1···O13.2197 (19)C17···H122.5400
N1···C233.446 (2)C18···H122.8900
N1···H7B2.3800C20···H5vii2.9000
N1···H162.5700C21···H5vii3.1000
N1···H232.9000H4···H8A2.3000
C1···C183.530 (2)H5···C20viii2.9000
C3···C20ii3.598 (3)H5···C21viii3.1000
C6···C173.123 (2)H6···O12.7200
C6···O13.222 (2)H6···C102.9500
C7···C7iii3.559 (3)H6···C172.9300
C12···C183.480 (2)H7A···C83.0400
C17···C63.123 (2)H7A···C14ix3.0800
C18···C123.480 (2)H7B···N12.3800
C18···C13.530 (2)H7C···C82.7300
C18···C21ii3.596 (3)H7C···H8C2.4200
C19···C21ii3.347 (3)H7C···C7iii3.1000
C19···C22ii3.589 (3)H8A···H42.3000
C19···O1i3.359 (2)H8B···C72.8300
C20···C3ii3.598 (3)H8B···C11ix3.0500
C20···C21ii3.540 (4)H8C···C72.9400
C20···C22ii3.522 (3)H8C···H7C2.4200
C21···C19ii3.347 (3)H8C···H16iii2.4600
C21···C20ii3.540 (4)H12···C172.5400
C21···C18ii3.596 (3)H12···C182.8900
C22···C19ii3.589 (3)H14···C11vi2.8900
C22···C20ii3.522 (3)H14···C12vi3.0800
C23···N13.446 (2)H16···N12.5700
C2···H20ii3.0200H16···H8Ciii2.4600
C3···H20ii2.8200H16···H16x2.5200
C5···H21ii2.9900H19···O12.5600
C7···H8B2.8300H19···O1i2.9200
C7···H8C2.9400H20···C2ii3.0200
C7···H7Ciii3.1000H20···C3ii2.8200
C7···H233.1000H21···C5ii2.9900
C8···H7A3.0400H23···N12.9000
C8···H7C2.7300H23···C73.1000
C10···H62.9500H23···C102.5600
C10···H232.5600H23···C14iv3.0800
C1—N1—C10121.79 (13)C4—C5—H5120.00
N1—C1—C2118.62 (13)C6—C5—H5120.00
N1—C1—C6120.55 (13)C1—C6—H6120.00
C2—C1—C6120.57 (14)C5—C6—H6120.00
C1—C2—C3118.56 (14)C2—C7—H7A109.00
C1—C2—C7120.39 (14)C2—C7—H7B109.00
C3—C2—C7121.03 (14)C2—C7—H7C109.00
C2—C3—C4119.84 (15)H7A—C7—H7B109.00
C2—C3—C8120.93 (15)H7A—C7—H7C109.00
C4—C3—C8119.23 (15)H7B—C7—H7C109.00
C3—C4—C5121.08 (15)C3—C8—H8A109.00
C4—C5—C6120.06 (15)C3—C8—H8B109.00
C1—C6—C5119.89 (15)C3—C8—H8C109.00
N1—C10—C11120.34 (14)H8A—C8—H8B109.00
N1—C10—C17123.48 (13)H8A—C8—H8C109.00
C11—C10—C17116.18 (13)H8B—C8—H8C109.00
C10—C11—C12121.24 (14)C11—C12—H12120.00
C10—C11—C16120.57 (14)C13—C12—H12120.00
C12—C11—C16118.19 (14)C12—C13—H13120.00
C11—C12—C13120.71 (17)C14—C13—H13120.00
C12—C13—C14120.38 (18)C13—C14—H14120.00
C13—C14—C15119.79 (18)C15—C14—H14120.00
C14—C15—C16120.5 (2)C14—C15—H15120.00
C11—C16—C15120.48 (17)C16—C15—H15120.00
O1—C17—C10118.21 (14)C11—C16—H16120.00
O1—C17—C18123.39 (15)C15—C16—H16120.00
C10—C17—C18118.35 (13)C18—C19—H19120.00
C17—C18—C19119.27 (14)C20—C19—H19120.00
C17—C18—C23121.58 (14)C19—C20—H20120.00
C19—C18—C23119.13 (15)C21—C20—H20120.00
C18—C19—C20119.46 (18)C20—C21—H21120.00
C19—C20—C21120.9 (2)C22—C21—H21120.00
C20—C21—C22120.4 (2)C21—C22—H22120.00
C21—C22—C23119.4 (2)C23—C22—H22120.00
C18—C23—C22120.62 (16)C18—C23—H23120.00
C3—C4—H4119.00C22—C23—H23120.00
C5—C4—H4119.00
C10—N1—C1—C2−121.60 (15)N1—C10—C17—C1886.93 (18)
C10—N1—C1—C664.3 (2)C11—C10—C17—O184.26 (17)
C1—N1—C10—C11−177.78 (13)C11—C10—C17—C18−93.34 (16)
C1—N1—C10—C172.0 (2)C10—C11—C12—C13179.05 (15)
N1—C1—C2—C3−175.88 (13)C16—C11—C12—C13−0.1 (2)
N1—C1—C2—C76.1 (2)C10—C11—C16—C15179.87 (15)
C6—C1—C2—C3−1.7 (2)C12—C11—C16—C15−1.0 (2)
C6—C1—C2—C7−179.80 (15)C11—C12—C13—C141.0 (3)
N1—C1—C6—C5174.71 (15)C12—C13—C14—C15−0.7 (3)
C2—C1—C6—C50.7 (2)C13—C14—C15—C16−0.4 (3)
C1—C2—C3—C41.6 (2)C14—C15—C16—C111.2 (3)
C1—C2—C3—C8−177.99 (15)O1—C17—C18—C19−3.6 (2)
C7—C2—C3—C4179.68 (16)O1—C17—C18—C23178.28 (16)
C7—C2—C3—C80.1 (2)C10—C17—C18—C19173.91 (15)
C2—C3—C4—C5−0.5 (3)C10—C17—C18—C23−4.3 (2)
C8—C3—C4—C5179.14 (18)C17—C18—C19—C20−178.35 (19)
C3—C4—C5—C6−0.6 (3)C23—C18—C19—C20−0.1 (3)
C4—C5—C6—C10.5 (3)C17—C18—C23—C22178.62 (16)
N1—C10—C11—C12−163.48 (14)C19—C18—C23—C220.5 (3)
N1—C10—C11—C1615.6 (2)C18—C19—C20—C21−0.3 (4)
C17—C10—C11—C1216.8 (2)C19—C20—C21—C220.4 (4)
C17—C10—C11—C16−164.10 (14)C20—C21—C22—C23−0.1 (4)
N1—C10—C17—O1−95.47 (19)C21—C22—C23—C18−0.3 (3)

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z; (iii) −x, −y+1, −z; (iv) −x+1/2, y+1/2, −z+1/2; (v) x, y−1, z; (vi) −x+1/2, y−1/2, −z+1/2; (vii) x+1/2, −y+1/2, z+1/2; (viii) x−1/2, −y+1/2, z−1/2; (ix) x, y+1, z; (x) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7B···N10.962.382.849 (2)109
C5—H5···Cg1viii0.932.993.6636 (19)130

Symmetry codes: (viii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2227).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010). Acta Cryst. E66, o1953. [PMC free article] [PubMed]
  • Sarfraz, M., Tariq, M. I. & Tahir, M. N. (2010). Acta Cryst. E66, o2055. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010a). Acta Cryst. E66, o1562. [PMC free article] [PubMed]
  • Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010b). Acta Cryst. E66, o1817. [PMC free article] [PubMed]
  • Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography