PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2095–o2096.
Published online 2010 July 24. doi:  10.1107/S1600536810028539
PMCID: PMC3007430

2-Amino-4-methyl­pyridinium 3-carb­oxy-4-hy­droxy­benzene­sulfonate monohydrate

Abstract

In the crystal structure of the title salt, C6H9N2 +·C7H5O6S·H2O, the water mol­ecule acts as an acceptor of bifurcated N—H(...)O hydrogen bonds from the pyridinium H atom and one H atom of the 2-amino group, forming an R 2 1(6) ring. The 3-carb­oxy-4-hy­droxy­benzene­sulfonate anions self-assemble via O—H(...)O hydrogen bonds, leading to supra­molecular chains along the a axis. These chains and R 2 1(6) motifs are linked via O—H(...)O, N—H(...)O and C—H(...)O hydrogen bonds, forming a layer parallel to the ac plane. There is also an intra­molecular O—H(...)O hydrogen bond in the 3-carb­oxy-4-hy­droxy­benzene­sulfonate anion, generating an S(6) ring motif.

Related literature

For details of sulfonates, see: Onoda et al. (2001 [triangle]); Baskar Raj et al. (2003 [triangle]); Ma et al. (2003a [triangle],b [triangle],c [triangle],d [triangle],e [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2095-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·C7H5O6S·H2O
  • M r = 344.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2095-efi1.jpg
  • a = 8.3280 (9) Å
  • b = 24.122 (3) Å
  • c = 7.9355 (8) Å
  • β = 112.800 (3)°
  • V = 1469.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 100 K
  • 0.22 × 0.13 × 0.04 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.945, T max = 0.989
  • 19925 measured reflections
  • 5266 independent reflections
  • 3749 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.120
  • S = 1.03
  • 5266 reflections
  • 272 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810028539/is2579sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028539/is2579Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes are of current interest (Onoda et al., 2001). Such interactions can be utilized for designing supramolecular architectures (Baskar Raj et al., 2003). The crystal structure of transition metal (Mn, Co, Ni, Zn and Cu) complexes of the sulfosalicylate ion (3-carboxy-4-hydroxybenzenesulfonate) have been reported in the literature (Ma et al., 2003a,b,c,d,e). Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound (I) is presented here.

The asymmetric unit of (I) contains one 2-amino-4-methylpyridinium cation, one 3-carboxy-4-hydroxybenzenesulfonate anion and a water molecule (Fig. 1). The 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.005 (2) Å for atom C4. The protonated N1 atom has lead to a slight increase in the C1—N1—C5 angle to 122.70 (14)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), atom O1W of the water molecule act as acceptors of bifurcated N1—H1N1···O1W and N2—H1N2···O1W hydrogen bonds with the protonated nitrogen atom and one of the 2-amino group hydrogen atom (H1N2), forming a ring with graph-set notation R12(6). The 3-carboxy-4-hydroxybenzenesulfonate anions self-assemble via O3—H1O3···O6 hydrogen bonds, leading to a one-dimensional supramolecular chain along the a-axis. Furthermore, this chain and the R12(6) motif are cross-linked via O—H···O, N—H···O and C—H···O hydrogen bonds, forming a layer parallel to the ac plane. There is an intramolecular O1—H1O1···O2 hydrogen bond in the 3-carboxy-4-hydroxybenzenesulfonate anion, which generates an S(6) ring motif.

Experimental

A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (27 mg, Aldrich) and sulfosalicylic acid (54 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

All the H atoms were located from a difference Fourier map and refined freely [C—H = 0.94 (3)–1.013 (19) Å; N—H = 0.86 (3)–0.91 (3) Å and O—H = 0.84 (3)–0.89 (2) Å].

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Hydrogen bonding patterns in compound (I).

Crystal data

C6H9N2+·C7H5O6S·H2OF(000) = 720
Mr = 344.34Dx = 1.556 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3564 reflections
a = 8.3280 (9) Åθ = 2.9–31.3°
b = 24.122 (3) ŵ = 0.26 mm1
c = 7.9355 (8) ÅT = 100 K
β = 112.800 (3)°Plate, colourless
V = 1469.6 (3) Å30.22 × 0.13 × 0.04 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer5266 independent reflections
Radiation source: fine-focus sealed tube3749 reflections with I > 2σ(I)
graphiteRint = 0.054
[var phi] and ω scansθmax = 32.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −12→11
Tmin = 0.945, Tmax = 0.989k = −34→36
19925 measured reflectionsl = −11→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.056P)2 + 0.3252P] where P = (Fo2 + 2Fc2)/3
5266 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.72197 (18)0.06878 (6)0.66805 (18)0.0152 (3)
N20.5709 (2)0.13358 (6)0.4490 (2)0.0198 (3)
C10.7310 (2)0.02604 (7)0.7835 (2)0.0178 (3)
C20.5828 (2)0.00495 (7)0.7925 (2)0.0175 (3)
C30.4197 (2)0.02782 (6)0.6816 (2)0.0150 (3)
C40.4152 (2)0.07114 (7)0.5679 (2)0.0151 (3)
C50.5695 (2)0.09223 (6)0.5591 (2)0.0143 (3)
C60.2550 (2)0.00524 (8)0.6887 (2)0.0210 (3)
S11.05075 (5)0.122233 (15)1.12957 (5)0.01150 (9)
O10.45088 (16)0.26192 (5)0.70255 (16)0.0191 (2)
O20.25121 (14)0.18998 (5)0.77919 (15)0.0163 (2)
O30.38003 (15)0.11993 (5)0.96906 (15)0.0149 (2)
O40.99761 (15)0.08555 (5)1.24394 (14)0.0162 (2)
O51.19053 (14)0.15990 (5)1.23096 (15)0.0169 (2)
O61.08974 (14)0.09095 (4)0.99033 (14)0.0143 (2)
C70.5829 (2)0.22831 (6)0.8014 (2)0.0133 (3)
C80.7498 (2)0.24303 (7)0.8160 (2)0.0160 (3)
C90.8917 (2)0.21104 (6)0.9167 (2)0.0146 (3)
C100.86880 (19)0.16349 (6)1.00593 (19)0.0117 (3)
C110.70415 (19)0.14816 (6)0.99271 (19)0.0118 (3)
C120.55938 (19)0.18022 (6)0.88935 (19)0.0115 (3)
C130.3834 (2)0.16422 (6)0.87474 (19)0.0123 (3)
O1W−0.05262 (17)0.12872 (5)0.54890 (17)0.0207 (3)
H1A0.850 (3)0.0128 (9)0.855 (3)0.031 (6)*
H2A0.592 (3)−0.0256 (8)0.870 (3)0.020 (5)*
H4A0.309 (3)0.0871 (8)0.485 (3)0.018 (5)*
H6A0.161 (3)0.0148 (10)0.581 (3)0.044 (7)*
H6B0.239 (4)0.0168 (10)0.796 (4)0.051 (7)*
H6C0.259 (4)−0.0352 (11)0.695 (4)0.054 (8)*
H9A1.007 (3)0.2204 (8)0.925 (3)0.019 (5)*
H8A0.766 (3)0.2767 (9)0.752 (3)0.027 (5)*
H11A0.683 (3)0.1137 (8)1.054 (3)0.017 (5)*
H1W1−0.027 (3)0.1193 (9)0.457 (3)0.030 (6)*
H2W10.034 (3)0.1488 (10)0.614 (3)0.035 (6)*
H1O10.353 (3)0.2485 (10)0.708 (3)0.038 (6)*
H1O30.280 (3)0.1160 (10)0.969 (3)0.040 (7)*
H1N10.822 (3)0.0824 (9)0.661 (3)0.039 (7)*
H1N20.671 (3)0.1437 (9)0.450 (3)0.031 (6)*
H2N20.471 (4)0.1469 (11)0.379 (3)0.047 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0115 (6)0.0191 (6)0.0148 (6)0.0004 (5)0.0047 (5)−0.0003 (5)
N20.0177 (8)0.0222 (7)0.0193 (7)−0.0003 (6)0.0070 (6)0.0056 (5)
C10.0166 (8)0.0182 (7)0.0160 (7)0.0020 (6)0.0035 (6)−0.0001 (6)
C20.0201 (8)0.0166 (7)0.0150 (7)0.0018 (6)0.0060 (6)0.0015 (5)
C30.0159 (8)0.0173 (7)0.0120 (6)−0.0027 (6)0.0057 (6)−0.0030 (5)
C40.0129 (7)0.0191 (7)0.0127 (7)0.0005 (6)0.0044 (6)0.0004 (5)
C50.0148 (7)0.0169 (7)0.0115 (6)0.0004 (6)0.0053 (5)−0.0006 (5)
C60.0204 (9)0.0242 (9)0.0205 (8)−0.0073 (7)0.0100 (7)−0.0015 (6)
S10.00831 (17)0.01437 (17)0.01216 (16)0.00001 (13)0.00434 (12)0.00150 (12)
O10.0124 (6)0.0204 (6)0.0239 (6)0.0034 (4)0.0062 (5)0.0083 (4)
O20.0093 (5)0.0196 (5)0.0186 (5)0.0009 (4)0.0038 (4)0.0017 (4)
O30.0100 (5)0.0166 (5)0.0204 (5)−0.0003 (4)0.0085 (4)0.0033 (4)
O40.0124 (5)0.0206 (6)0.0162 (5)0.0007 (4)0.0062 (4)0.0057 (4)
O50.0108 (5)0.0196 (5)0.0175 (5)−0.0035 (4)0.0023 (4)−0.0011 (4)
O60.0118 (5)0.0169 (5)0.0166 (5)0.0012 (4)0.0079 (4)0.0000 (4)
C70.0114 (7)0.0147 (7)0.0134 (6)0.0018 (5)0.0044 (5)0.0023 (5)
C80.0132 (7)0.0172 (7)0.0188 (7)−0.0005 (6)0.0075 (6)0.0044 (6)
C90.0110 (7)0.0168 (7)0.0169 (7)−0.0012 (5)0.0066 (6)0.0017 (5)
C100.0109 (7)0.0142 (6)0.0105 (6)0.0000 (5)0.0046 (5)−0.0012 (5)
C110.0119 (7)0.0130 (6)0.0119 (6)−0.0002 (5)0.0063 (5)−0.0010 (5)
C120.0099 (7)0.0137 (6)0.0116 (6)0.0004 (5)0.0050 (5)0.0001 (5)
C130.0119 (7)0.0139 (6)0.0121 (6)−0.0002 (5)0.0059 (5)−0.0016 (5)
O1W0.0168 (6)0.0282 (7)0.0184 (6)−0.0051 (5)0.0083 (5)−0.0024 (5)

Geometric parameters (Å, °)

N1—C51.352 (2)S1—O61.4744 (10)
N1—C11.362 (2)S1—C101.7598 (15)
N1—H1N10.91 (3)O1—C71.3464 (18)
N2—C51.329 (2)O1—H1O10.89 (2)
N2—H1N20.87 (2)O2—C131.2354 (18)
N2—H2N20.86 (3)O3—C131.3108 (17)
C1—C21.362 (2)O3—H1O30.84 (3)
C1—H1A0.98 (2)C7—C81.396 (2)
C2—C31.413 (2)C7—C121.4059 (19)
C2—H2A0.946 (19)C8—C91.378 (2)
C3—C41.372 (2)C8—H8A0.99 (2)
C3—C61.496 (2)C9—C101.399 (2)
C4—C51.408 (2)C9—H9A0.96 (2)
C4—H4A0.95 (2)C10—C111.384 (2)
C6—H6A0.94 (3)C11—C121.399 (2)
C6—H6B0.96 (3)C11—H11A1.013 (19)
C6—H6C0.98 (3)C12—C131.476 (2)
S1—O51.4498 (12)O1W—H1W10.87 (2)
S1—O41.4539 (10)O1W—H2W10.86 (3)
C5—N1—C1122.70 (14)O4—S1—O6111.41 (6)
C5—N1—H1N1117.5 (15)O5—S1—C10106.72 (7)
C1—N1—H1N1119.8 (15)O4—S1—C10106.72 (7)
C5—N2—H1N2117.3 (15)O6—S1—C10105.29 (6)
C5—N2—H2N2117.0 (17)C7—O1—H1O1107.9 (15)
H1N2—N2—H2N2126 (2)C13—O3—H1O3109.5 (17)
N1—C1—C2120.18 (15)O1—C7—C8117.20 (13)
N1—C1—H1A114.5 (13)O1—C7—C12123.15 (13)
C2—C1—H1A125.3 (13)C8—C7—C12119.64 (14)
C1—C2—C3119.59 (15)C9—C8—C7120.56 (14)
C1—C2—H2A118.8 (12)C9—C8—H8A119.9 (13)
C3—C2—H2A121.5 (12)C7—C8—H8A119.5 (13)
C4—C3—C2118.76 (15)C8—C9—C10119.87 (14)
C4—C3—C6120.69 (15)C8—C9—H9A121.1 (12)
C2—C3—C6120.55 (14)C10—C9—H9A119.0 (12)
C3—C4—C5121.00 (15)C11—C10—C9120.40 (14)
C3—C4—H4A122.9 (12)C11—C10—S1120.31 (11)
C5—C4—H4A115.9 (12)C9—C10—S1119.26 (11)
N2—C5—N1119.28 (15)C10—C11—C12120.00 (13)
N2—C5—C4122.94 (15)C10—C11—H11A122.3 (11)
N1—C5—C4117.77 (14)C12—C11—H11A117.7 (11)
C3—C6—H6A109.5 (15)C11—C12—C7119.53 (13)
C3—C6—H6B112.1 (16)C11—C12—C13120.35 (13)
H6A—C6—H6B112 (2)C7—C12—C13120.11 (13)
C3—C6—H6C110.6 (17)O2—C13—O3123.31 (13)
H6A—C6—H6C107 (2)O2—C13—C12122.56 (13)
H6B—C6—H6C105 (2)O3—C13—C12114.11 (13)
O5—S1—O4114.09 (7)H1W1—O1W—H2W1103 (2)
O5—S1—O6111.96 (6)
C5—N1—C1—C20.2 (2)O6—S1—C10—C11101.97 (12)
N1—C1—C2—C3−0.2 (2)O5—S1—C10—C943.01 (13)
C1—C2—C3—C4−0.3 (2)O4—S1—C10—C9165.36 (11)
C1—C2—C3—C6179.81 (15)O6—S1—C10—C9−76.13 (12)
C2—C3—C4—C50.8 (2)C9—C10—C11—C120.1 (2)
C6—C3—C4—C5−179.32 (14)S1—C10—C11—C12−177.97 (10)
C1—N1—C5—N2−179.53 (14)C10—C11—C12—C7−0.8 (2)
C1—N1—C5—C40.2 (2)C10—C11—C12—C13−179.91 (13)
C3—C4—C5—N2179.01 (14)O1—C7—C12—C11−178.68 (13)
C3—C4—C5—N1−0.8 (2)C8—C7—C12—C111.0 (2)
O1—C7—C8—C9179.25 (14)O1—C7—C12—C130.4 (2)
C12—C7—C8—C9−0.4 (2)C8—C7—C12—C13−179.93 (13)
C7—C8—C9—C10−0.3 (2)C11—C12—C13—O2−177.02 (13)
C8—C9—C10—C110.4 (2)C7—C12—C13—O23.9 (2)
C8—C9—C10—S1178.55 (12)C11—C12—C13—O31.81 (19)
O5—S1—C10—C11−138.89 (12)C7—C12—C13—O3−177.26 (12)
O4—S1—C10—C11−16.54 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.87 (2)1.96 (2)2.8108 (18)168 (2)
O1W—H2W1···O20.86 (2)2.04 (2)2.8882 (18)175 (2)
O1—H1O1···O20.89 (3)1.84 (2)2.6325 (18)146 (2)
O3—H1O3···O6ii0.84 (3)1.76 (3)2.5842 (18)166 (2)
N1—H1N1···O1Wiii0.92 (3)1.96 (2)2.808 (2)153 (2)
N2—H1N2···O1Wiii0.87 (3)2.16 (3)2.923 (2)147.7 (19)
N2—H2N2···O5i0.86 (3)2.19 (3)3.030 (2)163 (3)
C2—H2A···O3iv0.94 (2)2.58 (2)3.507 (2)169.1 (17)
C4—H4A···O4i0.96 (2)2.56 (2)3.449 (2)155.4 (16)
C4—H4A···O5i0.96 (2)2.57 (2)3.370 (2)142 (2)

Symmetry codes: (i) x−1, y, z−1; (ii) x−1, y, z; (iii) x+1, y, z; (iv) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2579).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Baskar Raj, S., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Ma, J.-F., Yang, J. & Liu, J.-F. (2003a). Acta Cryst. E59, m478–m480.
  • Ma, J.-F., Yang, J. & Liu, J.-F. (2003b). Acta Cryst. E59, m481–m482.
  • Ma, J.-F., Yang, J. & Liu, J.-F. (2003c). Acta Cryst. E59, m483–m484.
  • Ma, J.-F., Yang, J. & Liu, J.-F. (2003d). Acta Cryst. E59, m485–m486.
  • Ma, J.-F., Yang, J. & Liu, J.-F. (2003e). Acta Cryst. E59, m487–m488.
  • Onoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem.40, 516–521. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography