PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m915–m916.
Published online 2010 July 10. doi:  10.1107/S160053681002667X
PMCID: PMC3007428

[(1R,4S)-(+)-3-Benzoyl-1,7,7-trimethyl­bicyclo­[2.2.1]heptan-2-olato-κ2 O 2,O 3](η4-norbornadiene)rhodium(I)

Abstract

In the title complex mol­ecule, [Rh(C17H19O2)(C7H8)], the rhodium(I) metal centre is coordinated by the O atoms of a benzoyl­camphorate anion and the C=C bonds of the norbornadiene mol­ecule into a slightly distorted square-planar coordination geometry. The six-membered chelate ring is essentially planar (r.m.s. deviation = 0.0378 Å) and forms a dihedral angle of 31.67 (11)° with the phenyl ring.

Related literature

For the synthesis and properties of rhodium complexes in enanti­oselective transformations, see: Noyori (1994 [triangle]); Breuzard et al. (2000 [triangle]); Bernard et al. (2001 [triangle]). For the chemistry and applications of camphor-derived compounds, see: Togni (1990 [triangle]); Togni et al. (1993 [triangle]); Guo & Sadler (1999 [triangle]). For the synthesis, structure and applications of transition metal complexes in catalytic asymmetric reactions, see: Naili et al. (2000 [triangle]); Ait Ali, Allaoud et al. (2000 [triangle]); Fdil et al. (2002 [triangle]). For related structures, see: Spannenberg et al. (2002 [triangle]); Ait Ali, El Firdoussi et al. (2000 [triangle]); Ait Ali et al. (2001 [triangle], 2006 [triangle]); El Firdoussi et al. (2007 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m915-scheme1.jpg

Experimental

Crystal data

  • [Rh(C17H19O2)(C7H8)]
  • M r = 450.37
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m915-efi1.jpg
  • a = 6.4755 (11) Å
  • b = 8.2817 (13) Å
  • c = 38.320 (6) Å
  • V = 2055.0 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.85 mm−1
  • T = 295 K
  • 0.33 × 0.16 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.855, T max = 0.937
  • 21718 measured reflections
  • 3990 independent reflections
  • 3953 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.074
  • S = 1.27
  • 3990 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.59 e Å−3
  • Δρmin = −1.11 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1643 Friedel pairs
  • Flack parameter: 0.03 (4)

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and SCHAKAL97 (Keller, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002667X/gk2290sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002667X/gk2290Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.

supplementary crystallographic information

Comment

Rhodium complexes are widely used in organic chemistry due to their ability to mediate numerous transformations of organic molecules, often in catalytic mode. In particular, rhodium complexes of chiral ligands have shown to perform highly enantioselective transformations (Noyori, 1994; Breuzard et al., 2000; Bernard et al., 2001). Camphor-derived 1,3-diketonato ligands are a potentially attractive class of ligands in organometallic development, because these compounds are readily synthesized and easily varied (Togni, 1990; Togni et al., 1993). Moreover, some of their transition metal complexes can be used as therapeutic drugs (Guo & Sadler, 1999). As a contribution to our research programs aimed at the preparation of transition metal complexes (Spannenberg et al., 2002; Ait Ali, El Firdoussi et al., 2000; Ait Ali et al., 2001, 2006; El Firdoussi et al., 2007) and their application in catalytic asymmetric reactions (Naili et al., 2000; Ait Ali, Allaoud et al., 2000; Fdil et al., 2002), we report here the synthesis and crystal structure of the title compound.

In the mononuclear title complex molecule (Fig. 1), the rhodium(I) metal atom assumes a slightly tetrahedrally distorted square-planar coordination geometry provided by the O atoms of the chelating benzoylcamphorato anion and the centroids of the C═C double bonds of the norbornadiene molecule (maximum displacement 0.078 (5) Å for the centroid of the C18═C19 bonds). The RhO2C3 six-membered chelate ring is essentially planar (r.m.s. deviation = 0.0378 Å) and forms a dihedral angle of 31.67 (11)° with the C12–C17 phenyl ring. The C–O (O1–C2 = 1.265 (5) Å; O2–C11 = 1.298 (5) Å) and C–C (C2–C3 = 1.427 (6) Å; C3–C11 = 1.402 (5) Å) bond lengths pattern within the metallacycle indicates a high degree of π-delocalization. The Rh–O bond lengths (2.047 (3) and 2.059 (2) Å) are not significantly different from those observed in the closely related compound (cycloocta-1,5-diene)[(1R)-(+)-3-benzoyl-camphoryl]rhodium(I) (2.047 (3) and 2.059 (2) Å; Spannenberg et al., 2002). The Rh–C (mean value 2.113 (4) Å) and the donor C═C double bonds distances (mean value 1.388 (7) Å) involving the norbornadiene molecule are in agreement with the range of values observed in 286 related structures (mean values: Rh–C, 2.164 Å; C═C, 1.384 Å; Cambridge Structural Database; Version 5.31, November 2009; Allen, 2002). The crystal packing (Fig. 2) is stabilized only by van der Waals interactions.

Experimental

A solution of [Rh(norbornadiene)Cl]2 (0.18 mmol, 100 mg) in THF (10 ml) was added to a suspension of (1R)-(+)-3-benzoylcamphor (0.32 mmol, 83.4 mg) and Na2CO3 (0.94 mmol, 100 mg) in THF (10 ml). The mixture was stirred for 3 h at room temperature, then it was evaporated to dryness under reduced pressure. The residue was extracted with CH2Cl2 (3 × 10 ml), and the recovered filtrate was evaporated to dryness to give an orange solid (yield 86%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a diethyl ether solution.

Refinement

All H atoms were placed at calculated positions and refined using the riding model approximation, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. The absolute configuration was assigned on the basis of the known absolute configuration of the starting material and confirmed by anomalous scattering effects.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level.
Fig. 2.
Crystal packing of the title compound viewed approximately along the a axis.

Crystal data

[Rh(C17H19O2)(C7H8)]F(000) = 928
Mr = 450.37Dx = 1.456 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 772 reflections
a = 6.4755 (11) Åθ = 5.2–24.8°
b = 8.2817 (13) ŵ = 0.85 mm1
c = 38.320 (6) ÅT = 295 K
V = 2055.0 (6) Å3Block, orange
Z = 40.33 × 0.16 × 0.10 mm

Data collection

Bruker SMART 1000 CCD diffractometer3990 independent reflections
Radiation source: fine-focus sealed tube3953 reflections with I > 2σ(I)
graphiteRint = 0.040
ω scansθmax = 26.0°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −7→7
Tmin = 0.855, Tmax = 0.937k = −10→10
21718 measured reflectionsl = −47→47

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.074w = 1/[σ2(Fo2) + (0.017P)2 + 2.5414P] where P = (Fo2 + 2Fc2)/3
S = 1.27(Δ/σ)max = 0.001
3990 reflectionsΔρmax = 0.59 e Å3
244 parametersΔρmin = −1.11 e Å3
0 restraintsAbsolute structure: Flack (1983), 1643 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.03 (4)

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Rh10.56683 (5)0.36256 (3)0.081995 (8)0.03291 (9)
O10.3616 (4)0.1728 (3)0.08213 (8)0.0400 (6)
O20.5107 (4)0.4086 (3)0.13360 (7)0.0398 (7)
C10.1414 (6)−0.0255 (5)0.11061 (11)0.0368 (9)
C20.2775 (6)0.1238 (5)0.11000 (10)0.0344 (8)
C30.2779 (6)0.1910 (5)0.14431 (10)0.0318 (8)
C40.1389 (6)0.0796 (5)0.16545 (11)0.0355 (9)
H40.15900.08470.19080.043*
C5−0.0856 (7)0.1121 (6)0.15294 (11)0.0471 (10)
H5A−0.18530.05540.16730.056*
H5B−0.11710.22660.15320.056*
C6−0.0825 (8)0.0446 (6)0.11516 (12)0.0460 (10)
H6A−0.10880.12960.09830.055*
H6B−0.1855−0.03940.11230.055*
C70.1856 (7)−0.0886 (5)0.14854 (12)0.0380 (9)
C80.0410 (9)−0.2252 (5)0.16093 (13)0.0531 (12)
H8A−0.1000−0.19410.15710.080*
H8B0.0628−0.24450.18540.080*
H8C0.0703−0.32190.14800.080*
C90.4082 (7)−0.1450 (6)0.15381 (13)0.0512 (10)
H9A0.5013−0.06210.14610.077*
H9B0.4317−0.24150.14050.077*
H9C0.4315−0.16670.17810.077*
C100.1716 (7)−0.1380 (6)0.07994 (14)0.0571 (12)
H10A0.0806−0.22890.08220.086*
H10B0.3121−0.17490.07950.086*
H10C0.1413−0.08150.05870.086*
C110.3863 (6)0.3304 (4)0.15408 (10)0.0327 (9)
C120.3729 (7)0.4015 (5)0.19004 (11)0.0394 (10)
C130.5477 (10)0.4824 (5)0.20309 (12)0.0527 (12)
H130.66840.48590.19000.063*
C140.5404 (13)0.5571 (7)0.23555 (14)0.0759 (19)
H140.65740.60830.24420.091*
C150.3625 (13)0.5558 (8)0.25484 (16)0.086 (2)
H150.35760.60850.27630.103*
C160.1911 (12)0.4765 (7)0.24245 (15)0.0758 (19)
H160.07180.47380.25590.091*
C170.1928 (9)0.3994 (6)0.20983 (12)0.0535 (12)
H170.07510.34760.20160.064*
C180.5765 (9)0.4075 (6)0.02782 (11)0.0517 (11)
H180.43970.38760.02180.062*
C190.7252 (7)0.2940 (5)0.03643 (11)0.0413 (10)
H190.70760.18270.03750.050*
C200.9252 (8)0.3882 (5)0.04392 (11)0.0466 (10)
H201.05520.32760.04360.056*
C210.8629 (7)0.4696 (5)0.07839 (13)0.0441 (10)
H210.91480.44670.10050.053*
C220.7137 (8)0.5842 (5)0.07018 (13)0.0526 (13)
H220.64590.65290.08560.063*
C230.6835 (9)0.5738 (6)0.03026 (13)0.0570 (13)
H230.61570.66520.01870.068*
C240.9039 (10)0.5307 (6)0.01829 (13)0.0604 (14)
H24A1.00270.61630.02270.072*
H24B0.91010.4974−0.00600.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Rh10.03562 (15)0.03097 (13)0.03214 (14)−0.00890 (14)0.00359 (13)−0.00053 (14)
O10.0433 (15)0.0385 (15)0.0383 (14)−0.0161 (11)0.0057 (13)−0.0017 (14)
O20.0494 (18)0.0328 (15)0.0372 (15)−0.0137 (12)0.0057 (12)−0.0036 (11)
C10.031 (2)0.036 (2)0.043 (2)−0.0109 (17)0.0029 (17)−0.0011 (18)
C20.0289 (18)0.031 (2)0.043 (2)−0.0044 (18)0.0009 (15)0.0034 (19)
C30.031 (2)0.0294 (19)0.035 (2)−0.0016 (15)0.0032 (16)0.0002 (16)
C40.035 (2)0.037 (2)0.035 (2)−0.0034 (16)0.0016 (16)0.0032 (17)
C50.034 (2)0.050 (3)0.057 (3)−0.002 (2)0.007 (2)0.002 (2)
C60.033 (2)0.052 (3)0.053 (3)−0.008 (2)−0.002 (2)0.008 (2)
C70.035 (2)0.029 (2)0.050 (2)−0.0058 (17)0.0006 (18)0.0041 (17)
C80.055 (3)0.041 (2)0.064 (3)−0.014 (2)0.005 (3)0.013 (2)
C90.044 (3)0.040 (2)0.069 (3)0.004 (3)−0.003 (2)0.000 (2)
C100.059 (3)0.052 (2)0.060 (3)−0.026 (2)0.010 (2)−0.019 (3)
C110.039 (2)0.0233 (19)0.036 (2)0.0011 (15)0.0036 (16)0.0002 (15)
C120.057 (3)0.027 (2)0.035 (2)0.0042 (17)0.0007 (18)0.0028 (16)
C130.076 (4)0.041 (2)0.041 (2)−0.006 (3)−0.006 (3)−0.0033 (18)
C140.117 (6)0.061 (3)0.049 (3)−0.015 (4)−0.019 (4)−0.013 (3)
C150.149 (7)0.062 (4)0.047 (3)−0.001 (4)0.009 (4)−0.025 (3)
C160.122 (6)0.060 (3)0.046 (3)0.019 (4)0.031 (3)−0.001 (3)
C170.075 (3)0.044 (3)0.042 (2)0.006 (2)0.014 (2)−0.002 (2)
C180.047 (2)0.072 (3)0.037 (2)−0.014 (3)−0.003 (2)0.007 (2)
C190.053 (3)0.039 (2)0.031 (2)−0.011 (2)0.0085 (19)−0.0046 (18)
C200.040 (2)0.048 (2)0.052 (2)−0.006 (2)0.008 (2)0.0018 (19)
C210.046 (2)0.045 (2)0.040 (2)−0.0219 (18)0.000 (2)0.000 (2)
C220.064 (3)0.033 (2)0.061 (3)−0.013 (2)0.021 (2)0.002 (2)
C230.068 (3)0.049 (3)0.054 (3)0.001 (3)0.005 (3)0.025 (2)
C240.070 (4)0.061 (3)0.050 (3)−0.020 (3)0.015 (3)0.009 (2)

Geometric parameters (Å, °)

Rh1—O22.047 (3)C10—H10A0.9600
Rh1—O12.059 (2)C10—H10B0.9600
Rh1—C192.103 (4)C10—H10C0.9600
Rh1—C182.110 (4)C11—C121.501 (5)
Rh1—C222.116 (4)C12—C171.391 (7)
Rh1—C212.116 (4)C12—C131.407 (7)
O1—C21.265 (5)C13—C141.390 (7)
O2—C111.298 (5)C13—H130.9300
C1—C101.512 (6)C14—C151.369 (10)
C1—C21.519 (5)C14—H140.9300
C1—C71.571 (6)C15—C161.374 (10)
C1—C61.572 (6)C15—H150.9300
C2—C31.427 (6)C16—C171.403 (7)
C3—C111.402 (5)C16—H160.9300
C3—C41.522 (5)C17—H170.9300
C4—C51.554 (6)C18—C191.386 (7)
C4—C71.566 (6)C18—C231.545 (7)
C4—H40.9800C18—H180.9300
C5—C61.552 (6)C19—C201.539 (6)
C5—H5A0.9700C19—H190.9300
C5—H5B0.9700C20—C211.537 (6)
C6—H6A0.9700C20—C241.541 (6)
C6—H6B0.9700C20—H200.9800
C7—C91.529 (6)C21—C221.390 (7)
C7—C81.543 (6)C21—H210.9300
C8—H8A0.9600C22—C231.544 (7)
C8—H8B0.9600C22—H220.9300
C8—H8C0.9600C23—C241.541 (8)
C9—H9A0.9600C23—H230.9800
C9—H9B0.9600C24—H24A0.9700
C9—H9C0.9600C24—H24B0.9700
O2—Rh1—O191.44 (11)H10A—C10—H10B109.5
O2—Rh1—C19159.91 (16)C1—C10—H10C109.5
O1—Rh1—C1996.36 (14)H10A—C10—H10C109.5
O2—Rh1—C18157.38 (16)H10B—C10—H10C109.5
O1—Rh1—C1898.99 (17)O2—C11—C3124.1 (4)
C19—Rh1—C1838.40 (19)O2—C11—C12113.3 (3)
O2—Rh1—C2297.18 (16)C3—C11—C12122.6 (3)
O1—Rh1—C22162.36 (18)C17—C12—C13119.1 (4)
C19—Rh1—C2280.64 (18)C17—C12—C11123.0 (4)
C18—Rh1—C2267.9 (2)C13—C12—C11117.8 (4)
O2—Rh1—C2198.38 (15)C14—C13—C12120.2 (6)
O1—Rh1—C21154.79 (15)C14—C13—H13119.9
C19—Rh1—C2167.50 (18)C12—C13—H13119.9
C18—Rh1—C2180.5 (2)C15—C14—C13120.5 (6)
C22—Rh1—C2138.35 (19)C15—C14—H14119.7
C2—O1—Rh1121.6 (3)C13—C14—H14119.7
C11—O2—Rh1127.0 (2)C14—C15—C16119.8 (5)
C10—C1—C2114.5 (3)C14—C15—H15120.1
C10—C1—C7119.4 (4)C16—C15—H15120.1
C2—C1—C7100.3 (3)C15—C16—C17121.3 (6)
C10—C1—C6115.7 (4)C15—C16—H16119.4
C2—C1—C6103.7 (3)C17—C16—H16119.4
C7—C1—C6100.9 (3)C12—C17—C16119.1 (6)
O1—C2—C3130.7 (4)C12—C17—H17120.5
O1—C2—C1121.6 (4)C16—C17—H17120.5
C3—C2—C1107.7 (3)C19—C18—C23106.2 (4)
C11—C3—C2124.6 (4)C19—C18—Rh170.5 (2)
C11—C3—C4130.8 (4)C23—C18—Rh196.4 (3)
C2—C3—C4104.6 (3)C19—C18—H18126.9
C3—C4—C5106.5 (3)C23—C18—H18126.9
C3—C4—C7101.8 (3)Rh1—C18—H18100.7
C5—C4—C7102.0 (3)C18—C19—C20106.6 (4)
C3—C4—H4115.0C18—C19—Rh171.1 (3)
C5—C4—H4115.0C20—C19—Rh196.8 (3)
C7—C4—H4115.0C18—C19—H19126.7
C6—C5—C4102.3 (4)C20—C19—H19126.7
C6—C5—H5A111.3Rh1—C19—H1999.9
C4—C5—H5A111.3C21—C20—C1999.3 (3)
C6—C5—H5B111.3C21—C20—C24100.9 (4)
C4—C5—H5B111.3C19—C20—C24101.2 (4)
H5A—C5—H5B109.2C21—C20—H20117.5
C5—C6—C1104.4 (4)C19—C20—H20117.5
C5—C6—H6A110.9C24—C20—H20117.5
C1—C6—H6A110.9C22—C21—C20106.7 (4)
C5—C6—H6B110.9C22—C21—Rh170.8 (2)
C1—C6—H6B110.9C20—C21—Rh196.3 (3)
H6A—C6—H6B108.9C22—C21—H21126.7
C9—C7—C8107.9 (4)C20—C21—H21126.7
C9—C7—C4113.5 (4)Rh1—C21—H21100.5
C8—C7—C4114.1 (4)C21—C22—C23105.9 (4)
C9—C7—C1113.3 (4)C21—C22—Rh170.8 (2)
C8—C7—C1114.7 (4)C23—C22—Rh196.1 (3)
C4—C7—C193.0 (3)C21—C22—H22127.0
C7—C8—H8A109.5C23—C22—H22127.0
C7—C8—H8B109.5Rh1—C22—H22100.6
H8A—C8—H8B109.5C24—C23—C22101.0 (4)
C7—C8—H8C109.5C24—C23—C18101.0 (4)
H8A—C8—H8C109.5C22—C23—C1899.6 (3)
H8B—C8—H8C109.5C24—C23—H23117.4
C7—C9—H9A109.5C22—C23—H23117.4
C7—C9—H9B109.5C18—C23—H23117.4
H9A—C9—H9B109.5C23—C24—C2094.1 (4)
C7—C9—H9C109.5C23—C24—H24A112.9
H9A—C9—H9C109.5C20—C24—H24A112.9
H9B—C9—H9C109.5C23—C24—H24B112.9
C1—C10—H10A109.5C20—C24—H24B112.9
C1—C10—H10B109.5H24A—C24—H24B110.3

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2290).

References

  • Ait Ali, M., Ait Itto, Y., Hasnaoui, A., Riahi, A., Karim, A. & Daran, J.-C. (2001). J. Organomet. Chem.619, 265–270.
  • Ait Ali, M., Allaoud, S., Karim, A., Meliet, C. & Mortreux, A. (2000). Tetrahedron Asymmetry, 11, 1367–1374.
  • Ait Ali, M., El Firdoussi, L., Karim, A., Barrero, A. F. & Quirós, M. (2000). Acta Cryst. C56, 1088–1089. [PubMed]
  • Ait Ali, M., Karim, A., Castanet, Y., Mortreux, A. & Mentré, O. (2006). Acta Cryst. E62, m3160–m3162.
  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bernard, M., Delbecq, F., Fache, F., Sautet, P. & Lemaire, M. (2001). Eur. J. Org. Chem. pp. 1589–1596.
  • Breuzard, J. A. J., Tomassino, M. L., Touchard, F., Lemaine, M. & Bonnet, M. C. (2000). J. Mol. Catal.156, 223–232.
  • Bruker (1998). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • El Firdoussi, L., Ait Ali, M., Karim, A. & Spannenberg, A. (2007). Z. Kristallogr. New Cryst. Struct.222, 195–196.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fdil, N., Ait Itto, M. Y., Ait Ali, M., Karim, A. & Daran, J. C. (2002). Tetrahedron Lett., 43, 8769–8771.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Guo, Z. & Sadler, P. J. (1999). Angew. Chem. Int. Ed.38, 1512–1531.
  • Keller, E. (1997). SCHAKAL97 University of Freiburg, Germany.
  • Naili, S., Suisse, I., Mortreux, A., Agbossou, F., Ait Ali, M. & Karim, A. (2000). Tetrahedron Lett.41, 2867–2870.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Noyori, R. (1994). Asymmetric Catalysis in Organic Synthesis New York: John Wiley & Sons.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spannenberg, A., Fdil, N., El Firdoussi, L. & Karim, A. (2002). Z. Kristallogr. New Cryst. Struct.217, 549–550.
  • Togni, A. (1990). Organometallics, 9, 3106–3213.
  • Togni, A., Rist, G. & Schweiger, A. (1993). J. Am. Chem. Soc.115, 1908–1915.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography