PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m869–m870.
Published online 2010 July 3. doi:  10.1107/S1600536810025079
PMCID: PMC3007426

1,4,8,11-Tetra­azoniacyclo­tetra­decane tetra­chloridocobaltate(II) dichloride

Abstract

The asymmetric unit of the title compound, (C10H28N4)[CoCl4]Cl2, contains two half-mol­ecules of the macrocycle, which are both completed by crystallographic inversion symmetry. In the dianion, the Co2+ cation is tetra­hedrally coordinated by four Cl atoms; the Co—Cl bond lengths correlate with the number of hydrogen bonds that the chloride ions accept. The crystal cohesion is supported by electrostatic inter­actions which, together with numerous N—H(...)Cl, N—H(...)(Cl,Cl) and C—H(...)Cl hydrogen bonds, lead to a three-dimensional network.

Related literature

For background to organic–inorganic hybrid networks and their properties, see: Bu et al. (2001 [triangle]); Mitzi et al. (1999 [triangle]). For hydrogen-bonding in supra­molecular networks, see: Brammer et al. (2002 [triangle]). For related structures, see: El Glaoui et al. (2009 [triangle]); Jakubas et al. (2005 [triangle]); Adamski et al. (2009 [triangle]); Boyd & McFadyen (2007 [triangle]); Hashizume et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m869-scheme1.jpg

Experimental

Crystal data

  • (C10H28N4)[CoCl4]Cl2
  • M r = 475.99
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m869-efi1.jpg
  • a = 7.4058 (10) Å
  • b = 8.1244 (10) Å
  • c = 17.147 (1) Å
  • α = 84.36 (2)°
  • β = 85.56 (2)°
  • γ = 77.84 (2)°
  • V = 1001.97 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.66 mm−1
  • T = 293 K
  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • 21712 measured reflections
  • 4375 independent reflections
  • 4023 reflections with I > 2σ(I)
  • R int = 0.012
  • 2 standard reflections every 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.098
  • S = 1.13
  • 4375 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 0.99 e Å−3
  • Δρmin = −0.70 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810025079/hb5513sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025079/hb5513Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The rational design and synthesis of organic-inorganic hybrid materials have attracted an increasing interest in recent years not only from a structural point of view, but also due to their potential applications in different areas such as catalysis, medicine, electrical conductivity, magnetism and photochemistry (e.g. Bu et al., 2001).

A large number of transition metal when associated to organic molecule which presents potential sites of the hydrogen bonding interactions, exhibit interesting one- (1-D), two- (2-D), and three-dimensional (3-D) structures. These organic molecules may be present different and interesting properties which can profoundly influence the structures of inorganic component in the resultant hybrid material. Such organic-inorganic hybrid materials can combine appropriate characteristics of each component to produce novel structural types, as well as new properties arising from the interplay of the two components (Mitzi et al., 1999).

The asymmetric unit of the [CoCl4](C10H28N4),2Cl, (I). contains one tetrachlorocobalt anion, one organic cation and two chloride anion as shown in Fig. 1. The cohesion and the stability between these different components are assured by the network hydrogen bonding of type (N—H···Cl). However, the energetic of N—H···Cl—M (M = metal) hydrogen bonds and their possible roles in supramolecular chemistry have only been recently described in details (Brammer et al., 2002). This type of hydrogen bond is also observed in other hybrid compounds such as Bis(5-Chloro-2,4-Dimethoxyanilinium) Tetrachlorozincate Trihydrate (El Glaoui et al., 2009) and pyrrolidinium hexachloroantimonate (V) (Jakubas et al., 2005).

The Co2+ entity is tetrahedrally coordinated to four chloride atoms as shown in Figure 2. The distortion from the ideal geometry is small. This situation is also observed in others compounds which contain CoCl42- entity as an anion (Adamski et al., 2009). Examination of the CoCl42- geometry shows two types of Co—Cl distances. The largest ones 2.3170 (8) Å, 2.2963 (7) Å and 2.2950 (9) Å, while the smallest one is 2.2609 (8) Å. The average values of the Co—Cl distances and Cl—Co—Cl angles are 2.2923 Å and 109.52°, respectively. These geometrical features have also been noticed in others crystal structure (Boyd et al., 2007); (Hashizume et al., 1999).

The differences in the Co—Cl bond lengths correlate with the number of hydrogen bonds accepted by the Cl atom: Co—Cl4 bond is the longest (2.3170 (8) Å); Cl4 accepts three H-bonds, Co—Cl2 and Co—Cl3 have similar, intermediate lengths, and Cl1, which accepts only C—H···Cl hydrogen bond, makes the shortest Co—Cl bond.

The four N atoms of the macrocyclic ring are protonated, which provide the cations as formula (C10H28N4)4+, for neutralize the negative charge of the anionic part. Crystal cohesion and stability are supported by electrostatic interactions which, together with N—H···Cl and C—H···Cl hydrogen bonds, build up a three-dimensional network.

Experimental

The hexahydrate of chloride cobalt (II) CoCl2.6H2O (3.1 mmol) was added to an aqueous solution containing a stochiometric ratio of C10H24N4 (1,4,8,11-tetraazacyclotetradecane) (3.1 mmol) under continuous stirring. A pink precipitate was formed, which was completely dissolved by adding an aqueous solution of HCl until it disappeared. The obtained solution was slowly evaporated at room temperature for several days until the formation of blue prisms of (I). The synthesis is reproducible and crystals obtained in this way are stable for a long time under normal conditions of temperature and humidity.

Figures

Fig. 1.
The molecular structure of (I): displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as spheres of arbitrary radius. [Symmetry code: (i) (-x + 1, -y + 1, -z + 1))(ii) (x, -1 + y, z)].
Fig. 2.
Projection of (I) along the a axis.

Crystal data

(C10H28N4)[CoCl4]Cl2Z = 2
Mr = 475.99F(000) = 490
Triclinic, P1Dx = 1.578 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4058 (10) ÅCell parameters from 25 reflections
b = 8.1244 (10) Åθ = 12–15°
c = 17.147 (1) ŵ = 1.66 mm1
α = 84.36 (2)°T = 293 K
β = 85.56 (2)°Prism, blue
γ = 77.84 (2)°0.20 × 0.15 × 0.10 mm
V = 1001.97 (19) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.012
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.4°
graphiteh = −9→2
non–profiled ω/2θ scansk = −10→10
21712 measured reflectionsl = −21→21
4375 independent reflections2 standard reflections every 120 min
4023 reflections with I > 2σ(I) intensity decay: −1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098w = 1/[σ2(Fo2) + (0.0484P)2 + 1.0784P] where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
4375 reflectionsΔρmax = 0.99 e Å3
191 parametersΔρmin = −0.69 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0098 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co0.70021 (4)0.68008 (4)0.739869 (18)0.02545 (12)
Cl10.59983 (10)0.94777 (8)0.77340 (4)0.03784 (17)
Cl20.98382 (9)0.53726 (8)0.77981 (4)0.03170 (15)
Cl30.72293 (9)0.69599 (9)0.60513 (3)0.03302 (16)
Cl40.49963 (9)0.51312 (8)0.79699 (4)0.03371 (16)
Cl50.13290 (9)0.05084 (8)0.62097 (4)0.03219 (15)
Cl60.79324 (9)0.72834 (9)0.98838 (4)0.03847 (17)
N40.3477 (3)0.3336 (3)0.65786 (12)0.0285 (4)
H4A0.33850.38780.70180.034*
H4B0.30430.23830.67050.034*
N11.1540 (3)0.7804 (3)0.88701 (12)0.0287 (4)
H1A1.04610.77810.91470.034*
H1B1.19480.67810.86880.034*
N21.1506 (3)0.7095 (2)1.07369 (12)0.0260 (4)
H2A1.04760.70141.05100.031*
H2B1.17080.62631.11260.031*
N30.7691 (3)0.1442 (3)0.53021 (13)0.0288 (4)
H3A0.78010.07090.49320.035*
H3B0.84700.09550.56750.035*
C50.8823 (4)1.0892 (3)1.18244 (15)0.0317 (5)
H5A0.77091.09901.21680.038*
H5B0.97851.11491.21170.038*
C70.5487 (3)0.2847 (3)0.63236 (14)0.0266 (5)
H7A0.61800.22860.67660.032*
H7B0.59580.38550.61420.032*
C21.3114 (3)0.6829 (3)1.01371 (15)0.0293 (5)
H2C1.32740.57000.99680.035*
H2D1.42270.68901.03870.035*
C80.2242 (3)0.4440 (3)0.59907 (15)0.0282 (5)
H8A0.09900.46990.62240.034*
H8B0.22230.38190.55370.034*
C11.2914 (3)0.8090 (3)0.94166 (14)0.0276 (5)
H1C1.25310.92230.95850.033*
H1D1.41110.80160.91340.033*
C40.9406 (4)0.9072 (3)1.16103 (15)0.0308 (5)
H4C0.95870.83281.20890.037*
H4D0.84170.87871.13450.037*
C60.5756 (3)0.1671 (3)0.56660 (15)0.0274 (5)
H6A0.55080.05820.58740.033*
H6B0.48840.21390.52680.033*
C100.1664 (3)0.7006 (3)0.50678 (16)0.0297 (5)
H10A0.16740.62410.46670.036*
H10B0.03990.73330.52790.036*
C31.1177 (4)0.8759 (3)1.10836 (17)0.0336 (6)
H3C1.11040.96561.06630.040*
H3D1.22180.87941.13870.040*
C90.2862 (4)0.6085 (3)0.57213 (18)0.0371 (6)
H9A0.27390.67840.61570.045*
H9B0.41510.58490.55320.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co0.02721 (19)0.02537 (18)0.02405 (18)−0.00576 (13)0.00061 (12)−0.00424 (12)
Cl10.0455 (4)0.0261 (3)0.0424 (4)−0.0072 (3)−0.0007 (3)−0.0074 (3)
Cl20.0307 (3)0.0305 (3)0.0328 (3)−0.0039 (2)−0.0015 (2)−0.0029 (2)
Cl30.0324 (3)0.0433 (4)0.0248 (3)−0.0102 (3)−0.0001 (2)−0.0059 (2)
Cl40.0350 (3)0.0343 (3)0.0348 (3)−0.0141 (3)0.0055 (2)−0.0087 (2)
Cl50.0361 (3)0.0301 (3)0.0321 (3)−0.0084 (2)−0.0056 (2)−0.0048 (2)
Cl60.0296 (3)0.0405 (4)0.0482 (4)−0.0144 (3)0.0001 (3)−0.0041 (3)
N40.0340 (11)0.0270 (10)0.0257 (10)−0.0094 (9)0.0056 (8)−0.0071 (8)
N10.0315 (11)0.0259 (10)0.0297 (10)−0.0072 (8)0.0032 (8)−0.0080 (8)
N20.0289 (10)0.0208 (9)0.0271 (10)−0.0036 (8)0.0004 (8)−0.0001 (8)
N30.0262 (10)0.0248 (10)0.0340 (11)−0.0006 (8)−0.0022 (8)−0.0060 (8)
C50.0376 (14)0.0331 (13)0.0241 (11)−0.0065 (11)0.0034 (10)−0.0066 (10)
C70.0286 (12)0.0254 (11)0.0263 (11)−0.0059 (9)−0.0027 (9)−0.0030 (9)
C20.0253 (11)0.0258 (11)0.0351 (13)−0.0011 (9)0.0020 (10)−0.0062 (10)
C80.0258 (11)0.0281 (12)0.0310 (12)−0.0055 (9)0.0033 (9)−0.0076 (9)
C10.0256 (11)0.0301 (12)0.0288 (12)−0.0094 (9)0.0040 (9)−0.0067 (9)
C40.0355 (13)0.0282 (12)0.0280 (12)−0.0071 (10)0.0053 (10)−0.0030 (10)
C60.0262 (11)0.0235 (11)0.0328 (12)−0.0051 (9)0.0007 (9)−0.0054 (9)
C100.0235 (11)0.0314 (12)0.0347 (13)−0.0064 (9)−0.0006 (10)−0.0045 (10)
C30.0334 (13)0.0319 (13)0.0383 (14)−0.0100 (11)0.0063 (11)−0.0151 (11)
C90.0392 (14)0.0281 (13)0.0475 (16)−0.0122 (11)−0.0130 (12)−0.0003 (11)

Geometric parameters (Å, °)

Co—Cl12.2609 (8)C7—C61.523 (3)
Co—Cl22.2950 (9)C7—H7A0.9700
Co—Cl32.2963 (7)C7—H7B0.9700
Co—Cl42.3170 (8)C2—C11.521 (4)
N4—C71.500 (3)C2—H2C0.9700
N4—C81.509 (3)C2—H2D0.9700
N4—H4A0.9000C8—C91.522 (4)
N4—H4B0.9000C8—H8A0.9700
N1—C11.503 (3)C8—H8B0.9700
N1—C5i1.515 (3)C1—H1C0.9700
N1—H1A0.9000C1—H1D0.9700
N1—H1B0.9000C4—C31.523 (4)
N2—C31.495 (3)C4—H4C0.9700
N2—C21.506 (3)C4—H4D0.9700
N2—H2A0.9000C6—H6A0.9700
N2—H2B0.9000C6—H6B0.9700
N3—C61.500 (3)C10—N3ii1.506 (3)
N3—C10ii1.506 (3)C10—C91.521 (4)
N3—H3A0.9000C10—H10A0.9700
N3—H3B0.9000C10—H10B0.9700
C5—N1i1.515 (3)C3—H3C0.9700
C5—C41.524 (4)C3—H3D0.9700
C5—H5A0.9700C9—H9A0.9700
C5—H5B0.9700C9—H9B0.9700
Cl1—Co—Cl2117.71 (3)N2—C2—H2D108.6
Cl1—Co—Cl3106.35 (3)C1—C2—H2D108.6
Cl2—Co—Cl3106.05 (3)H2C—C2—H2D107.6
Cl1—Co—Cl4109.41 (3)N4—C8—C9113.0 (2)
Cl2—Co—Cl4103.43 (3)N4—C8—H8A109.0
Cl3—Co—Cl4114.17 (3)C9—C8—H8A109.0
C7—N4—C8116.34 (19)N4—C8—H8B109.0
C7—N4—H4A108.2C9—C8—H8B109.0
C8—N4—H4A108.2H8A—C8—H8B107.8
C7—N4—H4B108.2N1—C1—C2113.2 (2)
C8—N4—H4B108.2N1—C1—H1C108.9
H4A—N4—H4B107.4C2—C1—H1C108.9
C1—N1—C5i115.3 (2)N1—C1—H1D108.9
C1—N1—H1A108.5C2—C1—H1D108.9
C5i—N1—H1A108.5H1C—C1—H1D107.8
C1—N1—H1B108.5C3—C4—C5113.2 (2)
C5i—N1—H1B108.5C3—C4—H4C108.9
H1A—N1—H1B107.5C5—C4—H4C108.9
C3—N2—C2114.07 (19)C3—C4—H4D108.9
C3—N2—H2A108.7C5—C4—H4D108.9
C2—N2—H2A108.7H4C—C4—H4D107.7
C3—N2—H2B108.7N3—C6—C7110.9 (2)
C2—N2—H2B108.7N3—C6—H6A109.5
H2A—N2—H2B107.6C7—C6—H6A109.5
C6—N3—C10ii117.64 (19)N3—C6—H6B109.5
C6—N3—H3A107.9C7—C6—H6B109.5
C10ii—N3—H3A107.9H6A—C6—H6B108.1
C6—N3—H3B107.9N3ii—C10—C9112.8 (2)
C10ii—N3—H3B107.9N3ii—C10—H10A109.0
H3A—N3—H3B107.2C9—C10—H10A109.0
N1i—C5—C4114.7 (2)N3ii—C10—H10B109.0
N1i—C5—H5A108.6C9—C10—H10B109.0
C4—C5—H5A108.6H10A—C10—H10B107.8
N1i—C5—H5B108.6N2—C3—C4112.5 (2)
C4—C5—H5B108.6N2—C3—H3C109.1
H5A—C5—H5B107.6C4—C3—H3C109.1
N4—C7—C6110.50 (19)N2—C3—H3D109.1
N4—C7—H7A109.6C4—C3—H3D109.1
C6—C7—H7A109.6H3C—C3—H3D107.8
N4—C7—H7B109.6C10—C9—C8108.7 (2)
C6—C7—H7B109.6C10—C9—H9A109.9
H7A—C7—H7B108.1C8—C9—H9A109.9
N2—C2—C1114.7 (2)C10—C9—H9B109.9
N2—C2—H2C108.6C8—C9—H9B109.9
C1—C2—H2C108.6H9A—C9—H9B108.3

Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl60.902.263.155 (2)171
N1—H1B···Cl4iii0.902.653.370 (2)138
N1—H1B···Cl20.902.753.315 (2)122
N2—H2A···Cl60.902.203.090 (2)170
N2—H2B···Cl2iv0.902.513.284 (2)144
N2—H2B···Cl4iv0.902.953.609 (2)131
N3—H3A···Cl5v0.902.273.129 (2)160
N3—H3B···Cl5iii0.902.323.132 (2)151
N4—H4A···Cl40.902.503.298 (2)147
N4—H4A···Cl2vi0.902.933.508 (2)123
N4—H4B···Cl50.902.433.192 (2)143
C2—H2C···Cl6iv0.972.743.589 (3)147
C6—H6B···Cl3ii0.972.803.758 (3)169
C10—H10A···Cl3ii0.972.923.820 (3)155
C3—H3D···Cl1i0.972.743.610 (3)150
C3—H3C···Cl6i0.972.793.634 (3)147

Symmetry codes: (iii) x+1, y, z; (iv) −x+2, −y+1, −z+2; (v) −x+1, −y, −z+1; (vi) x−1, y, z; (ii) −x+1, −y+1, −z+1; (i) −x+2, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5513).

References

  • Adamski, A., Patroniak, V. & Kubicki, M. (2009). Acta Cryst. E65, m175–m176. [PMC free article] [PubMed]
  • Boyd, S. & McFadyen, W. D. (2007). Polyhedron, 26, 1669–1676.
  • Brammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956–4961. [PubMed]
  • Bu, X. H., Liu, H., Du, M., Wong, K. M. C., Yam, V. W. W. & Shionoya, M. (2001). Inorg. Chem.40, 4143–4149. [PubMed]
  • El Glaoui, M., Kefi, R., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2009). Open Crystallogr. J.2, 1–5.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Hashizume, D., Takayama, R., Nakayama, K., Ishida, T., Nogami, T., Yasui, M. & Iwasaki, F. (1999). Acta Cryst. C55, 1793–1797.
  • Jakubas, R., Bednarska-Bolek, B., Zaleski, J., Medycki, W., Holderna-Natkaniec, K., Zielinski, P. & Galazka, M. (2005). Solid State Sci.7, 381–390.
  • Mitzi, D. B. (1999). Prog. Inorg. Chem.1, 48–121.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography