PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m907–m908.
Published online 2010 July 10. doi:  10.1107/S1600536810024992
PMCID: PMC3007425

Racemic tricarbon­yl(η6-7-meth­oxy­flavan)chromium(0)

Abstract

In the title compound [systematic name: tricarbonyl(η6-7-methoxy-2-phenyl-3,4-dihydro-2H-1-benzopyran)chromium(0)], [Cr(C16H16O2)(CO)3], the Cr(CO)3 unit is coordinated by the phenyl­ene ring of the flavan ligand, exhibiting a three-legged piano-stool conformation, with a point to plane distance of 1.750 (1) Å. The phenyl ring is twisted away from the fused ring system by 36.49 (5)° (r.m.s. deviation = 0.027 Å; fitted atoms are the C6 ring and the attached fused-ring C and O atoms). The dihydro­pyran ring displays a distorted envelope configuration by displacement of the phenyl-bearing and the adjacent ring C atoms from the fused-ring system plane by 0.356 (2) and 0.402 (2) Å, respectively.

Related literature

7-Meth­oxy­flavan was synthesized via hydrogenation from 7-meth­oxy­flavanone, as described by Sato et al. (2006 [triangle]). For coordination of 7-meth­oxy­flavan to chromium, see: Müller et al. (1999 [triangle]). For the importance of flavonoids in biological investigations, see: Rice-Evans & Packer (2003 [triangle]). For Cr(CO)3 coordination to the phenyl­ene ring of a flavanone compound, see: Dominique et al. (1999 [triangle]). For comparison bond distances, see: Allen et al. (1987 [triangle]). For related structures, see: van Tonder et al. (2009a [triangle],b [triangle]). For the use of tricarbon­yl(arene)chromium complexes in regioselective organic synthesis, see: Muschalek et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m907-scheme1.jpg

Experimental

Crystal data

  • [Cr(C16H16O2)(CO)3]
  • M r = 376.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m907-efi1.jpg
  • a = 9.8422 (2) Å
  • b = 12.3850 (3) Å
  • c = 15.0146 (3) Å
  • β = 115.171 (1)°
  • V = 1656.42 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.72 mm−1
  • T = 173 K
  • 0.41 × 0.34 × 0.24 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.757, T max = 0.847
  • 12982 measured reflections
  • 3985 independent reflections
  • 3224 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.085
  • S = 1.07
  • 3985 reflections
  • 227 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024992/zb2005sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024992/zb2005Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the University of the Free State and SASOL to JHvanT is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of SASOL. We would like to express our gratitude to the School of Chemistry at the University of the Witwatersrand for the use of the diffractometer. Special thanks are due to Dr M. A. Fernandes.

supplementary crystallographic information

Comment

The title compound, (I), [Cr(C16H16O2)(CO)3], where (C16H16O2) = 7-methoxyflavan, has been examined due to the general biological activity of flavanoids (Rice-Evans & Packer, 2003) and the use of tricarbonyl(arene)chromium complexes in regioselective organic synthesis (Muschalek et al., 2007).

As with the tricarbonyl(η6-flavanone)chromium(0) complex reported by Dominique et al. (1999), the Cr(CO)3 unit of the title compound is coordinated by the phenylene ring of the flavanoid backbone (Fig.1). The chromium metal centre is displaced by 1.750 (1) Å from the A-η6-coordinated arene ring centre. The dihydropyran ring displays a distorted envelope configuration by displacement of atoms C2 and C3 from the fused ring system plane, with distances of 0.356 (2) and 0.402 (2) Å respectively (r.m.s. of fitted atoms C4, C10, C5, C6, C7, C8, C9 and O5 = 0.027 °). Further molecular disorder is displayed by the phenyl ring twist away from the fused ring system plane, by 36.49 (5)°.

The molecular packing displays two types of soft intermolecular contacts, this between O2···H8 [2.682 (1) Å] forming a O2···H8—C8 angle of 152.5 (1)° and O1···H6 [2.459 (1) Å] forming a O1···H6—C6 angle of 125.9 (1)° (Fig.2).

Experimental

7-Methoxyflavan was synthesised via H2SO4 catalyzed hydrogenation (5 bar) over 10% Pd/C from 7-methoxyflavanone, as described by Sato et al. (2006). 7-Methoxyflavan-4-one (1.00 g; 3.9 mmol), 10 % Pd/C (0.10 g), 3 M H2SO4 (aq.) (1 ml), EtOH (30 ml). Purification by means of flash column-chromatography yielded 7-methoxyflavan (0.67 g; 70.6%) as a colourless oil.

Rf 0.65 (H:DCM:EtOAc; 50:50:1); 1H NMR (600 MHz, CDCl3) δ ppm 7.44 – 7.41 (2H, m, H-2' and H-6'), 7.40 – 7.37 (2H, m, H-3' and H-5'), 7.34 – 7.31 (1H, m, H-4'), 6.99 – 6.97 (1H, m, H-5), 6.50 – 6.47 (2H, m, H-6 and H-8), 5.05 (1H, dd, J = 2.37, 10.19 Hz, H-2), 3.77 (3H, s, -OCH3), 2.92 (1H, ddd, J = 6.02, 10.92, 16.08 Hz, H-4(a)), 2.74 (1H, ddd, J = 3.40, 5.12, 16.08 Hz, H-4(e)), 2.22 – 2.18 (1H, m, H-3), 2.11– 2.04 (1H, m, H-3); 13C NMR (600 MHz, CDCl3) δ ppm 24.47 (C-4), 30.19 (C-3), 55.38 (-OCH3), 77.98 (C-2), 101.71 (C-6/8), 107.54 (C-6/8), 114.01, 126.11, 127.93, 128.61, 130.05, 141.79, 155.91, 155.91, 159.23

Preparation of the title compound, tricarbonyl(A-η6-7-methoxyflavane)chromium(0), was based on a method described by Müller et al. (1999). A solution of 7-Methoxyflavane (0.27 g, 1.1 mmol) and Cr(CO)6 (0.25 g, 1.1 mmol: 1 eq.) in Bu2O:THF (9:1; 10 ml per 100 mg Cr(CO)6 was degassed with argon, using standard Schlenk techniques, and refluxed (48 h) under an oxygen free atmosphere. The reaction mixture was cooled to room temperature and the solvent evaporated in vacuo. Purification through flash column-chromatography yielded tricarbonyl(A-η6-7-methoxyflavane)chromium(0) (0.07 g; 16.6.0%) as a yellow solid. Recrystallization from diethyl ether yielded yellow cuboidal crystals.

Rf 0.23 (Hexane: Acetone; 8:2); Mp 148.4 °C; Note: A, B and C-ring labelling refers to the benzene, phenyl and dihydropyrane rings respectively. 1H NMR (600 MHz, CDCl3) δ ppm 7.49 (2H, d, J = 7.15 Hz, H-2' and H-6'), 7.41 (2H, dd, J = 7.15, 8.66 Hz, H-3' and H-5'), 7.39 – 7.35 (1H, m, H-4'), 5.65 (1H, d, J = 6.61 Hz, H-5), 5.15 (1H, s, H-8), 4.90 – 4.86 (2H, m, H-2 and H-6), 3.72 (3H, s, -OCH3), 2.93 (1H, ddd, J = 4.89, 12.43, 15.65 Hz, H-4(a)), 2.54 (1H, dd, J = 4.14, 15.65 Hz, H-4(e)), 2.31 (1H, ddd, J = 4.14, 12.43, 13.68 Hz, H-3(a)), 2.13 (1H, dd, J = 4.89, 13.68 Hz, H-3(e)); 13C NMR (600 MHz, CDCl3) δ ppm 25.52 (C-4), 29.52 (C-3), 55.86 (-OCH3), 68.31 (C-8), 74.42 (C-2/6), 80.56 (C-2/6), 89.11, 94.55 (C-5), 126.61, 128.83, 128.89, 139.62, 140.30, 143.33, 234.44 (-Cr(CO)3); MS m/z 376 (M+, 13.0), 344 (0.2), 320 (0.1), 292 (70.7), 277 (0.2), 256 (0.1), 240 (5.8), 225 (0.5), 209 (0.3), 188 (100.0), 173 (0.4), 146 (10.0), 137 (2.1), 121 (2.0), 104 (5.1).

Refinement

The H atoms were positioned geometrically and refined using a riding model with fixed C—H distances of 0.93 Å (ArH) [Uiso(H) = 1.2Ueq], 1.00 Å (CH) [Uiso(H) = 1.2Ueq], 0.99 Å (CH2) [Uiso(H) = 1.2Ueq] and 0.96 Å (CH3) [Uiso(H) = 1.5Ueq]. Initial positions of methyl H-atoms were obtained from fourier difference and refined as a fixed rotor.

The highest density peak is 0.25 located 0.66 Å from C1' and the deepest hole is -0.40 located at 0.50 Å from Cr.

Figures

Fig. 1.
A view of (I) showing the atom-numbering scheme with displacement ellipsoids at the 30% probability level.
Fig. 2.
Indication of molecular packing in the unit-cell. Symmetry operators 1) x; y; z. 2) 1 - x; 0.5 + y; 1.5 - z.

Crystal data

[Cr(C16H16O2)(CO)3]F(000) = 776
Mr = 376.32Dx = 1.509 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5285 reflections
a = 9.8422 (2) Åθ = 2.2–28.3°
b = 12.3850 (3) ŵ = 0.72 mm1
c = 15.0146 (3) ÅT = 173 K
β = 115.171 (1)°Prism, yellow
V = 1656.42 (6) Å30.41 × 0.34 × 0.24 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer3224 reflections with I > 2σ(I)
[var phi] and ω scansRint = 0.030
Absorption correction: multi-scan (Bruker, 2004)θmax = 28°, θmin = 2.2°
Tmin = 0.757, Tmax = 0.847h = −11→12
12982 measured reflectionsk = −16→16
3985 independent reflectionsl = −19→19

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030w = 1/[σ2(Fo2) + (0.0444P)2 + 0.0884P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.25 e Å3
3985 reflectionsΔρmin = −0.40 e Å3
227 parameters

Special details

Experimental. The intensity data was collected on a Bruker Apex II CCD diffractometer using a frame width of 0.5° covering up to θ = 28° with 100 % completeness accomplished.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1'1.01976 (18)0.59116 (14)0.84890 (12)0.0260 (3)
C2'0.9566 (2)0.69062 (15)0.85055 (13)0.0325 (4)
H2'0.85060.69880.82130.039*
C20.92726 (18)0.49179 (14)0.80339 (12)0.0268 (4)
H20.97030.45530.76180.032*
C3'1.0487 (2)0.77884 (16)0.89526 (14)0.0385 (4)
H3'1.00520.84710.89580.046*
C30.92236 (18)0.41073 (13)0.87814 (12)0.0276 (4)
H3A0.87550.44430.91810.033*
H3B1.02570.38860.9230.033*
C40.83175 (18)0.31200 (14)0.82448 (12)0.0272 (4)
H4A0.89080.26870.7980.033*
H4B0.81070.26630.87130.033*
C4'1.2029 (2)0.76723 (16)0.93867 (13)0.0380 (4)
H4'1.26540.82720.96960.046*
C5'1.2657 (2)0.66846 (16)0.93694 (13)0.0360 (4)
H5'1.37170.66030.9670.043*
C50.56441 (18)0.27492 (13)0.69612 (12)0.0260 (4)
H50.57230.20370.72140.031*
C60.43161 (18)0.30503 (13)0.61485 (12)0.0263 (3)
H60.35320.25410.58420.032*
C6'1.17553 (18)0.58135 (15)0.89185 (12)0.0295 (4)
H6'1.22010.51380.890.035*
C70.41667 (18)0.41122 (13)0.57975 (11)0.0247 (3)
C80.53223 (18)0.48677 (13)0.62755 (12)0.0251 (3)
H80.51830.56060.60850.03*
C90.66817 (17)0.45213 (14)0.70352 (12)0.0242 (3)
C100.68615 (17)0.34612 (13)0.74146 (12)0.0237 (3)
C110.56076 (19)0.50205 (13)0.85013 (13)0.0269 (4)
C120.42375 (19)0.32289 (14)0.82151 (13)0.0295 (4)
C130.29284 (19)0.48252 (14)0.70530 (13)0.0298 (4)
C710.17072 (19)0.37892 (16)0.45371 (13)0.0335 (4)
H71A0.20290.31810.42550.05*
H71B0.08940.41790.4010.05*
H71C0.13490.35180.50130.05*
O10.61634 (16)0.55726 (10)0.91861 (10)0.0436 (4)
O20.39278 (16)0.26735 (12)0.87217 (10)0.0486 (4)
O30.17872 (15)0.52563 (12)0.67906 (11)0.0482 (4)
O50.77684 (12)0.52853 (9)0.73998 (9)0.0305 (3)
O70.29490 (12)0.45045 (10)0.50235 (8)0.0303 (3)
Cr0.47389 (3)0.413031 (19)0.743218 (18)0.01990 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C1'0.0229 (8)0.0363 (9)0.0193 (8)−0.0040 (7)0.0096 (7)0.0017 (7)
C2'0.0282 (9)0.0401 (10)0.0317 (10)−0.0012 (8)0.0152 (8)0.0017 (8)
C20.0198 (8)0.0364 (9)0.0228 (8)−0.0006 (7)0.0077 (7)0.0013 (7)
C3'0.0494 (11)0.0344 (10)0.0391 (11)−0.0015 (9)0.0259 (10)0.0000 (8)
C30.0239 (8)0.0319 (9)0.0230 (8)0.0030 (7)0.0062 (7)0.0046 (7)
C40.0241 (8)0.0281 (8)0.0265 (9)0.0044 (7)0.0079 (7)0.0039 (7)
C4'0.0444 (11)0.0425 (11)0.0286 (10)−0.0176 (9)0.0170 (9)−0.0023 (8)
C5'0.0278 (9)0.0524 (12)0.0263 (9)−0.0110 (9)0.0100 (8)0.0034 (8)
C50.0286 (8)0.0203 (8)0.0280 (9)0.0025 (7)0.0110 (7)−0.0027 (6)
C60.0261 (8)0.0254 (8)0.0256 (8)−0.0011 (7)0.0092 (7)−0.0063 (7)
C6'0.0248 (8)0.0389 (10)0.0247 (9)−0.0013 (7)0.0105 (7)0.0037 (7)
C70.0209 (8)0.0331 (9)0.0195 (8)0.0020 (7)0.0081 (6)0.0009 (7)
C80.0243 (8)0.0279 (8)0.0232 (8)−0.0002 (7)0.0102 (7)0.0061 (7)
C90.0211 (8)0.0306 (8)0.0216 (8)−0.0023 (7)0.0098 (7)0.0017 (7)
C100.0229 (8)0.0258 (8)0.0227 (8)0.0021 (6)0.0101 (7)−0.0003 (6)
C110.0281 (9)0.0203 (8)0.0292 (9)0.0040 (7)0.0090 (7)0.0041 (7)
C120.0291 (9)0.0308 (9)0.0269 (9)−0.0074 (7)0.0104 (7)−0.0030 (7)
C130.0274 (9)0.0331 (9)0.0280 (9)−0.0003 (7)0.0108 (7)−0.0054 (7)
C710.0206 (8)0.0466 (11)0.0286 (9)−0.0041 (8)0.0058 (7)0.0003 (8)
O10.0546 (9)0.0264 (6)0.0327 (7)0.0063 (6)0.0020 (7)−0.0075 (6)
O20.0537 (9)0.0537 (9)0.0381 (8)−0.0232 (7)0.0195 (7)0.0062 (7)
O30.0302 (7)0.0592 (9)0.0495 (9)0.0148 (7)0.0115 (7)−0.0084 (7)
O50.0203 (6)0.0333 (7)0.0295 (6)−0.0058 (5)0.0024 (5)0.0110 (5)
O70.0231 (6)0.0369 (7)0.0243 (6)−0.0018 (5)0.0037 (5)0.0050 (5)
Cr0.02079 (14)0.01811 (14)0.02113 (14)−0.00032 (10)0.00923 (11)0.00022 (10)

Geometric parameters (Å, °)

C1'—C2'1.385 (3)C6—C71.401 (2)
C1'—C6'1.393 (2)C6—Cr2.2350 (16)
C1'—C21.510 (2)C6—H60.95
C2'—C3'1.396 (3)C6'—H6'0.95
C2'—H2'0.95C7—O71.3558 (19)
C2—O51.4513 (19)C7—C81.411 (2)
C2—C31.522 (2)C7—Cr2.2729 (16)
C2—H21C8—C91.406 (2)
C3'—C4'1.381 (3)C8—Cr2.2424 (16)
C3'—H3'0.95C8—H80.95
C3—C41.526 (2)C9—O51.3568 (19)
C3—H3A0.99C9—C101.412 (2)
C3—H3B0.99C9—Cr2.2838 (16)
C4—C101.505 (2)C10—Cr2.2580 (16)
C4—H4A0.99C11—O11.160 (2)
C4—H4B0.99C11—Cr1.8319 (17)
C4'—C5'1.375 (3)C12—O21.159 (2)
C4'—H4'0.95C12—Cr1.8344 (18)
C5'—C6'1.378 (2)C13—O31.151 (2)
C5'—H5'0.95C13—Cr1.8376 (18)
C5—C61.407 (2)C71—O71.433 (2)
C5—C101.408 (2)C71—H71A0.98
C5—Cr2.1808 (16)C71—H71B0.98
C5—H50.95C71—H71C0.98
C2'—C1'—C6'118.91 (16)O5—C9—C8115.42 (14)
C2'—C1'—C2122.96 (15)O5—C9—C10122.93 (14)
C6'—C1'—C2118.12 (15)C8—C9—C10121.58 (15)
C1'—C2'—C3'120.00 (16)O5—C9—Cr130.27 (11)
C1'—C2'—H2'120C8—C9—Cr70.31 (9)
C3'—C2'—H2'120C10—C9—Cr70.90 (9)
O5—C2—C1'106.96 (13)C5—C10—C9116.89 (14)
O5—C2—C3110.32 (13)C5—C10—C4122.62 (14)
C1'—C2—C3113.95 (14)C9—C10—C4120.46 (14)
O5—C2—H2108.5C5—C10—Cr68.55 (9)
C1'—C2—H2108.5C9—C10—Cr72.88 (9)
C3—C2—H2108.5C4—C10—Cr130.77 (11)
C4'—C3'—C2'120.27 (18)O1—C11—Cr179.12 (15)
C4'—C3'—H3'119.9O2—C12—Cr178.82 (16)
C2'—C3'—H3'119.9O3—C13—Cr178.24 (16)
C2—C3—C4109.51 (14)O7—C71—H71A109.5
C2—C3—H3A109.8O7—C71—H71B109.5
C4—C3—H3A109.8H71A—C71—H71B109.5
C2—C3—H3B109.8O7—C71—H71C109.5
C4—C3—H3B109.8H71A—C71—H71C109.5
H3A—C3—H3B108.2H71B—C71—H71C109.5
C10—C4—C3110.43 (13)C9—O5—C2117.07 (12)
C10—C4—H4A109.6C7—O7—C71117.83 (13)
C3—C4—H4A109.6C11—Cr—C1287.55 (7)
C10—C4—H4B109.6C11—Cr—C1391.11 (7)
C3—C4—H4B109.6C12—Cr—C1389.65 (8)
H4A—C4—H4B108.1C11—Cr—C5130.80 (7)
C5'—C4'—C3'119.72 (18)C12—Cr—C589.36 (7)
C5'—C4'—H4'120.1C13—Cr—C5137.98 (7)
C3'—C4'—H4'120.1C11—Cr—C6164.20 (7)
C4'—C5'—C6'120.35 (17)C12—Cr—C6100.73 (7)
C4'—C5'—H5'119.8C13—Cr—C6102.28 (7)
C6'—C5'—H5'119.8C5—Cr—C637.14 (6)
C6—C5—C10122.61 (15)C11—Cr—C8104.82 (7)
C6—C5—Cr73.52 (9)C12—Cr—C8166.28 (7)
C10—C5—Cr74.51 (9)C13—Cr—C895.93 (7)
C6—C5—H5118.7C5—Cr—C878.10 (6)
C10—C5—H5118.7C6—Cr—C865.85 (6)
Cr—C5—H5125C11—Cr—C1098.15 (7)
C7—C6—C5119.02 (15)C12—Cr—C10106.65 (7)
C7—C6—Cr73.38 (9)C13—Cr—C10161.49 (7)
C5—C6—Cr69.34 (9)C5—Cr—C1036.94 (6)
C7—C6—H6120.5C6—Cr—C1066.68 (6)
C5—C6—H6120.5C8—Cr—C1066.26 (6)
Cr—C6—H6129C11—Cr—C7139.56 (7)
C5'—C6'—C1'120.73 (17)C12—Cr—C7132.48 (7)
C5'—C6'—H6'119.6C13—Cr—C784.71 (7)
C1'—C6'—H6'119.6C5—Cr—C765.78 (6)
O7—C7—C6124.88 (15)C6—Cr—C736.20 (6)
O7—C7—C8115.21 (14)C8—Cr—C736.40 (6)
C6—C7—C8119.89 (14)C10—Cr—C777.84 (6)
O7—C7—Cr130.14 (11)C11—Cr—C988.31 (7)
C6—C7—Cr70.42 (9)C12—Cr—C9141.22 (7)
C8—C7—Cr70.62 (9)C13—Cr—C9128.98 (7)
C9—C8—C7119.56 (15)C5—Cr—C965.09 (6)
C9—C8—Cr73.51 (9)C6—Cr—C976.78 (6)
C7—C8—Cr72.98 (9)C8—Cr—C936.18 (6)
C9—C8—H8120.2C10—Cr—C936.22 (6)
C7—C8—H8120.2C7—Cr—C964.57 (6)
Cr—C8—H8124.9
C6'—C1'—C2'—C3'−0.4 (3)C7—C6—Cr—C9−64.80 (10)
C2—C1'—C2'—C3'178.97 (16)C5—C6—Cr—C966.02 (10)
C2'—C1'—C2—O517.3 (2)C9—C8—Cr—C1165.59 (11)
C6'—C1'—C2—O5−163.39 (14)C7—C8—Cr—C11−165.45 (10)
C2'—C1'—C2—C3−104.93 (18)C9—C8—Cr—C12−88.2 (3)
C6'—C1'—C2—C374.42 (19)C7—C8—Cr—C1240.8 (3)
C1'—C2'—C3'—C4'−0.5 (3)C9—C8—Cr—C13158.32 (10)
O5—C2—C3—C461.99 (17)C7—C8—Cr—C13−72.72 (10)
C1'—C2—C3—C4−177.69 (14)C9—C8—Cr—C5−63.83 (10)
C2—C3—C4—C10−47.68 (18)C7—C8—Cr—C565.13 (10)
C2'—C3'—C4'—C5'0.6 (3)C9—C8—Cr—C6−100.86 (11)
C3'—C4'—C5'—C6'0.3 (3)C7—C8—Cr—C628.10 (9)
C10—C5—C6—C7−2.7 (2)C9—C8—Cr—C10−26.92 (10)
Cr—C5—C6—C756.02 (14)C7—C8—Cr—C10102.04 (10)
C10—C5—C6—Cr−58.68 (14)C9—C8—Cr—C7−128.96 (15)
C4'—C5'—C6'—C1'−1.2 (3)C7—C8—Cr—C9128.96 (15)
C2'—C1'—C6'—C5'1.2 (3)C5—C10—Cr—C11155.21 (10)
C2—C1'—C6'—C5'−178.16 (16)C9—C10—Cr—C11−75.77 (10)
C5—C6—C7—O7−179.96 (15)C4—C10—Cr—C1140.00 (16)
Cr—C6—C7—O7−125.88 (16)C5—C10—Cr—C1265.34 (11)
C5—C6—C7—C8−1.7 (2)C9—C10—Cr—C12−165.64 (10)
Cr—C6—C7—C852.36 (14)C4—C10—Cr—C12−49.87 (16)
C5—C6—C7—Cr−54.07 (13)C5—C10—Cr—C13−85.5 (2)
O7—C7—C8—C9−174.85 (14)C9—C10—Cr—C1343.5 (3)
C6—C7—C8—C96.7 (2)C4—C10—Cr—C13159.3 (2)
Cr—C7—C8—C959.01 (14)C9—C10—Cr—C5129.02 (14)
O7—C7—C8—Cr126.14 (13)C4—C10—Cr—C5−115.21 (18)
C6—C7—C8—Cr−52.27 (14)C5—C10—Cr—C6−29.40 (9)
C7—C8—C9—O5175.10 (14)C9—C10—Cr—C699.61 (10)
Cr—C8—C9—O5−126.16 (14)C4—C10—Cr—C6−144.62 (16)
C7—C8—C9—C10−7.7 (2)C5—C10—Cr—C8−102.12 (10)
Cr—C8—C9—C1051.09 (14)C9—C10—Cr—C826.90 (9)
C7—C8—C9—Cr−58.74 (14)C4—C10—Cr—C8142.67 (16)
C6—C5—C10—C91.9 (2)C5—C10—Cr—C7−65.70 (10)
Cr—C5—C10—C9−56.37 (13)C9—C10—Cr—C763.32 (10)
C6—C5—C10—C4−176.23 (15)C4—C10—Cr—C7179.09 (16)
Cr—C5—C10—C4125.55 (15)C5—C10—Cr—C9−129.02 (14)
C6—C5—C10—Cr58.22 (14)C4—C10—Cr—C9115.77 (18)
O5—C9—C10—C5−179.62 (15)O7—C7—Cr—C11−85.11 (17)
C8—C9—C10—C53.3 (2)C6—C7—Cr—C11155.29 (11)
Cr—C9—C10—C554.18 (13)C8—C7—Cr—C1121.99 (14)
O5—C9—C10—C4−1.5 (2)O7—C7—Cr—C1285.04 (17)
C8—C9—C10—C4−178.53 (15)C6—C7—Cr—C12−34.57 (13)
Cr—C9—C10—C4−127.70 (15)C8—C7—Cr—C12−167.87 (11)
O5—C9—C10—Cr126.20 (16)O7—C7—Cr—C130.38 (15)
C8—C9—C10—Cr−50.83 (14)C6—C7—Cr—C13−119.22 (11)
C3—C4—C10—C5−163.05 (15)C8—C7—Cr—C13107.48 (11)
C3—C4—C10—C918.9 (2)O7—C7—Cr—C5149.67 (16)
C3—C4—C10—Cr−74.28 (18)C6—C7—Cr—C530.06 (9)
C8—C9—O5—C2−167.67 (14)C8—C7—Cr—C5−103.24 (10)
C10—C9—O5—C215.1 (2)O7—C7—Cr—C6119.60 (19)
Cr—C9—O5—C2107.28 (16)C8—C7—Cr—C6−133.30 (14)
C1'—C2—O5—C9−169.74 (13)O7—C7—Cr—C8−107.10 (18)
C3—C2—O5—C9−45.31 (19)C6—C7—Cr—C8133.30 (14)
C6—C7—O7—C711.2 (2)O7—C7—Cr—C10−173.42 (16)
C8—C7—O7—C71−177.07 (14)C6—C7—Cr—C1066.97 (10)
Cr—C7—O7—C71−91.82 (17)C8—C7—Cr—C10−66.33 (10)
C6—C5—Cr—C11−164.93 (10)O7—C7—Cr—C9−137.65 (16)
C10—C5—Cr—C11−33.24 (13)C6—C7—Cr—C9102.75 (10)
C6—C5—Cr—C12108.86 (11)C8—C7—Cr—C9−30.55 (9)
C10—C5—Cr—C12−119.45 (10)O5—C9—Cr—C11−11.15 (14)
C6—C5—Cr—C1320.10 (15)C8—C9—Cr—C11−118.27 (11)
C10—C5—Cr—C13151.78 (11)C10—C9—Cr—C11106.27 (10)
C10—C5—Cr—C6131.69 (15)O5—C9—Cr—C12−95.13 (17)
C6—C5—Cr—C8−65.53 (10)C8—C9—Cr—C12157.75 (12)
C10—C5—Cr—C866.16 (10)C10—C9—Cr—C1222.30 (15)
C6—C5—Cr—C10−131.69 (15)O5—C9—Cr—C1378.91 (16)
C6—C5—Cr—C7−29.35 (10)C8—C9—Cr—C13−28.21 (13)
C10—C5—Cr—C7102.34 (10)C10—C9—Cr—C13−163.67 (10)
C6—C5—Cr—C9−101.28 (11)O5—C9—Cr—C5−148.41 (16)
C10—C5—Cr—C930.41 (9)C8—C9—Cr—C5104.47 (11)
C7—C6—Cr—C11−84.6 (3)C10—C9—Cr—C5−30.99 (9)
C5—C6—Cr—C1146.3 (3)O5—C9—Cr—C6174.13 (15)
C7—C6—Cr—C12154.79 (10)C8—C9—Cr—C667.01 (10)
C5—C6—Cr—C12−74.38 (11)C10—C9—Cr—C6−68.45 (10)
C7—C6—Cr—C1362.79 (11)O5—C9—Cr—C8107.12 (18)
C5—C6—Cr—C13−166.38 (11)C10—C9—Cr—C8−135.45 (15)
C7—C6—Cr—C5−130.82 (15)O5—C9—Cr—C10−117.42 (18)
C7—C6—Cr—C8−28.25 (9)C8—C9—Cr—C10135.45 (15)
C5—C6—Cr—C8102.57 (11)O5—C9—Cr—C7137.85 (16)
C7—C6—Cr—C10−101.56 (10)C8—C9—Cr—C730.73 (10)
C5—C6—Cr—C1029.26 (9)C10—C9—Cr—C7−104.73 (10)
C5—C6—Cr—C7130.82 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZB2005).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). SAINT-Plus, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dominique, S., Lepoivre, A., Lemiere, G., Rapatopoulou, C. P. & Klouras, N. D. (1999). Monatsh. Chem.130, 305–311.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Müller, T. J. J., Ansorge, M. & Polburn, K. (1999). J. Organomet. Chem.578, 252–259.
  • Muschalek, B., Weidner, I. & Butenschön, H. (2007). J. Organomet. Chem.692, 2415–2424.
  • Rice-Evans, C. A. & Packer, L. (2003). Flavonoids in Health and Disease, 2nd ed. New York: Marcel Dekker Inc.
  • Sato, S., Hiroe, K., Kumazawa, T. & Jun-ichi, O. (2006). Carbohydr. Res.341, 1091–1095. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009a). Acta Cryst. E65, m1343. [PMC free article] [PubMed]
  • Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009b). Acta Cryst. E65, m1346. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography