PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m943–m944.
Published online 2010 July 17. doi:  10.1107/S1600536810027571
PMCID: PMC3007418

catena-Poly[[[bis­(thio­cyanato-κN)zinc(II)]-μ-1,2-bis­{[2-(2-pyrid­yl)-1H-imidazol-1-yl]meth­yl}benzene] 0.28-hydrate]

Abstract

The title one-dimensional coordination polymer, {[Zn(NCS)2(C24H20N6)2]·0.28H2O}n, was obtained by the reaction of Zn(OAc)2·2H2O, KSCN and 1,2-bis­{[2-(2-pyrid­yl)-1H-imid­azol-1-yl]meth­yl}benzene (hereafter L). The ZnII ion shows a distorted octa­hedral coordination geometry and is coordin­ated by two N atoms from two SCN anions and four N atoms from two organic ligands. The L ligands act as bridging bis-chelating ligands with cis coordination modes at the ZnII ion. One-dimensional coordination polymers are arranged into layers by π–π stacking inter­actions between the imidazole rings of adjacent chains, with an inter­planar distance of 3.46 (1) Å and centroid–centroid distances of 3.8775 (16) Å. One of the thio­cyanate ligands is disordered over two positions with an occupancy factor of 0.564 (3) for the major component. The partially occupied water mol­ecule forms an O—H(...)S hydrogen bond with the disordered thio­cyanate group.

Related literature

For backgroud to the topologies, supra­molecular structures and applications of metal-organic frameworks (MOFs), see: Dybtsev et al. (2004 [triangle]); Evans & Lin (2002 [triangle]); Moulton & Zaworotko (2001 [triangle]). For coordination modes of organic ligands, see: Janiak (2003 [triangle]). For similar structures, see: Dai et al. (2002 [triangle]); Luan et al. (2006 [triangle]). For the synthesis of 1,2-bis­{[2-(2-pyrid­yl)-1H-imidazol-1-yl]meth­yl}benzene, see: Li et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m943-scheme1.jpg

Experimental

Crystal data

  • [Zn(NCS)2(C24H20N6)2]·0.28H2O
  • M r = 579.03
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m943-efi1.jpg
  • a = 7.8780 (4) Å
  • b = 13.1770 (7) Å
  • c = 25.9620 (14) Å
  • β = 98.462 (1)°
  • V = 2665.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.11 mm−1
  • T = 293 K
  • 0.26 × 0.22 × 0.21 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.750, T max = 0.792
  • 13328 measured reflections
  • 4707 independent reflections
  • 3127 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.102
  • S = 1.04
  • 4707 reflections
  • 362 parameters
  • 30 restraints
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810027571/gk2287sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027571/gk2287Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We greatly acknowledge the financial support of this work by the Department of Education of Jilin Province.

supplementary crystallographic information

Comment

In recent years, there is an increasing interest in metal-organic frameworks (MOFs) for the versatile architectures and intriguing topologies as well as their wide potential applications (Dybtsev et al. 2004; Evans & Lin, 2002). A universal strategy for the construction of MOFs is dependent primarily on the appropriate choice of inorganic building blocks and different organic ligands. Among them, N-donor organic ligands are important because of their divers coordination modes to metal ions resulting in different structures (Janiak, 2003) and the ability to form of weak interactions to assemble supramolecular structures (Moulton & Zaworotko, 2001). In this case, 1,2-bis{[2-(2-pyridyl)-1H-imidazol-1-yl]methyl}benzene (hereafter L) is selected as organic ligand and reacted with Zn(OAc)2.2H2O and KSCN to obtain the title compound.

In the title compound, there is one kind of L ligand, ZnII ion and two kinds of SCN- anions in the unit cell (Fig. 1). Each ZnII ion is coordinated by two nitrogen atoms from two SCN- anions and four aromatic N atoms from two different L molecules with normal Zn—N distances (Dai et al. 2002; Luan et al. 2006), showing a distorted octahedral coordination geometry. Each L molecule is acting as a bridging bis-bidentate ligand coordinated to two ZnII ions to form polymeric one-dimensional chain (Fig. 2). Moreover, a two-dimensional supramolecular layer is finally formed by linking these chains through the π–π stacking interactions between imidazole rings from adjacent chains, with the plane to plane distance of 3.46 (1) Å and the centroid-centroid distances of 3.87 (8) Å. (Fig. 3).

Experimental

A mixture of Zn(OAc)2. 2H2O (1 mmol), L (1 mmol) (Li et al. 2008), KSCN (0.10 g, 2 mmol) and H2O (8 ml) was sealed in a 18 ml Teflon- lined stainless steel container which was heated to 120 °C for 50 h, and cooled to room temperature. Colorless polyhedron crystals were collected in 85% yield.

Refinement

The disordered SCN- anion was refined with S and C atoms split over two sites, with the sum of the occupancy factors equal to 1.00. In this anion restraints were imposed on the anion geometry (DFIX instructions of SHELXL-97) and anisotropic displacement parameter of C and S atoms (ISOR instruction). The occupancy factor of the water molecule was initially refined but it was fixed in the final refinement cycles. Positions of H atoms from water molecules were calculated assuming interactions with the anion S atoms and these atoms were refined as riding with O-H = 0.85 Å and Uiso=1.5Ueq (O). All H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and 0.97 Å, and Uiso=1.2Ueq (C).

Figures

Fig. 1.
A displacement ellipsoids view of the title compound with the displacement ellipsoids drawn at the 30% probability level. Symmetry code #2: x, -y+1/2, z-1/2.
Fig. 2.
View of the one-dimensional chain.
Fig. 3.
View of the two-dimensional supramolecular structure formed by π–π stacking interactions.

Crystal data

[Zn(NCS)2(C24H20N6)2]·0.28H2OF(000) = 1187
Mr = 579.03Dx = 1.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 2199 reflections
a = 7.8780 (4) Åθ = 1.6–26.4°
b = 13.1770 (7) ŵ = 1.11 mm1
c = 25.9620 (14) ÅT = 293 K
β = 98.462 (1)°Block, colorless
V = 2665.7 (2) Å30.26 × 0.22 × 0.21 mm
Z = 4

Data collection

Bruker APEX CCD area-detector diffractometer4707 independent reflections
Radiation source: fine-focus sealed tube3127 reflections with I > 2σ(I)
graphiteRint = 0.036
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.750, Tmax = 0.792k = −13→15
13328 measured reflectionsl = −28→30

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0472P)2 + 0.0052P] where P = (Fo2 + 2Fc2)/3
4707 reflections(Δ/σ)max = 0.001
362 parametersΔρmax = 0.38 e Å3
30 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.1405 (4)0.0988 (2)0.23131 (12)0.0627 (9)
H10.05600.05830.21280.075*
C20.1380 (4)0.1355 (2)0.27956 (12)0.0628 (9)
H20.05270.12530.30030.075*
C30.3735 (4)0.1861 (2)0.25115 (10)0.0498 (7)
C40.5346 (4)0.2347 (2)0.24331 (11)0.0488 (7)
C50.6518 (4)0.2810 (2)0.28088 (12)0.0652 (9)
H50.63600.28010.31570.078*
C60.7924 (5)0.3283 (3)0.26590 (14)0.0787 (10)
H60.87190.36070.29050.094*
C70.8146 (4)0.3274 (3)0.21460 (15)0.0797 (11)
H70.90590.36150.20340.096*
C80.6981 (4)0.2748 (3)0.18015 (13)0.0715 (10)
H80.71620.27100.14560.086*
C90.3326 (4)0.2402 (2)0.34290 (10)0.0562 (8)
H9A0.22870.25950.35640.067*
H9B0.39600.30180.33820.067*
C100.4402 (4)0.1734 (2)0.38252 (10)0.0493 (7)
C110.4785 (4)0.0736 (2)0.37134 (12)0.0633 (9)
H110.44020.04750.33840.076*
C120.4998 (3)0.2120 (2)0.43188 (10)0.0464 (7)
C130.5948 (4)0.1497 (2)0.46849 (11)0.0574 (8)
H130.63550.17510.50140.069*
C140.6294 (4)0.0511 (3)0.45663 (13)0.0699 (9)
H140.69210.01000.48160.084*
C150.5719 (4)0.0128 (3)0.40811 (14)0.0747 (10)
H150.5961−0.05390.40010.090*
C160.4598 (4)0.3198 (2)0.44434 (10)0.0514 (7)
H16A0.51260.36440.42150.062*
H16B0.33660.32970.43680.062*
C170.6633 (4)0.4061 (2)0.51368 (11)0.0594 (8)
H170.74190.42780.49260.071*
C180.6701 (4)0.4240 (2)0.56517 (12)0.0610 (8)
H180.75520.46110.58570.073*
C190.4434 (4)0.3341 (2)0.54193 (10)0.0460 (7)
C200.2902 (4)0.2752 (2)0.54843 (10)0.0480 (7)
C210.1991 (4)0.2117 (2)0.51218 (11)0.0554 (8)
H210.23080.20400.47930.066*
C220.0594 (4)0.1596 (3)0.52576 (13)0.0691 (9)
H22−0.00470.11730.50170.083*
C230.0159 (4)0.1703 (3)0.57424 (14)0.0728 (10)
H23−0.07740.13570.58390.087*
C240.1140 (4)0.2337 (3)0.60837 (13)0.0715 (10)
H240.08570.24040.64170.086*
N10.5617 (3)0.22928 (18)0.19344 (9)0.0557 (6)
N20.2857 (3)0.19105 (18)0.29238 (8)0.0531 (6)
N30.2880 (3)0.13082 (18)0.21386 (9)0.0556 (6)
N40.5181 (3)0.34985 (17)0.49856 (8)0.0490 (6)
N50.5331 (3)0.37948 (18)0.58233 (9)0.0525 (6)
N60.2472 (3)0.28627 (19)0.59660 (9)0.0566 (7)
N70.6024 (4)0.0045 (2)0.18550 (12)0.0833 (9)
C250.6692 (4)−0.0180 (2)0.22631 (14)0.0603 (8)
S20.75961 (13)−0.04934 (9)0.28408 (4)0.0927 (3)
N80.2453 (4)−0.0111 (2)0.11975 (10)0.0852 (10)
C260.1381 (15)−0.0639 (10)0.1031 (6)0.052 (3)0.56 (3)
S10.0107 (12)−0.1515 (10)0.0796 (4)0.1109 (18)0.56 (3)
C26'0.1698 (19)−0.0857 (8)0.1087 (8)0.042 (3)0.44 (3)
S1'0.0605 (18)−0.1874 (10)0.0912 (4)0.091 (3)0.44 (3)
Zn10.41177 (5)0.10351 (3)0.149130 (12)0.05821 (16)
O1W−0.0298 (16)0.1050 (10)0.3898 (4)0.154 (5)0.28
H1W−0.12260.07450.37820.231*0.28
H2W−0.04080.16420.37680.231*0.28

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.070 (2)0.072 (2)0.0484 (19)−0.0175 (18)0.0148 (17)−0.0006 (16)
C20.063 (2)0.080 (2)0.050 (2)−0.0060 (18)0.0228 (17)0.0030 (16)
C30.0625 (19)0.0526 (18)0.0363 (16)−0.0014 (15)0.0143 (15)−0.0020 (13)
C40.0609 (19)0.0455 (17)0.0416 (17)0.0010 (15)0.0127 (15)−0.0043 (13)
C50.072 (2)0.069 (2)0.055 (2)−0.0104 (19)0.0133 (18)−0.0107 (17)
C60.076 (2)0.085 (3)0.075 (3)−0.014 (2)0.010 (2)−0.024 (2)
C70.072 (2)0.087 (3)0.087 (3)−0.027 (2)0.034 (2)−0.018 (2)
C80.081 (2)0.077 (2)0.064 (2)−0.015 (2)0.037 (2)−0.0131 (18)
C90.077 (2)0.0581 (19)0.0361 (16)0.0103 (17)0.0170 (15)−0.0024 (14)
C100.0592 (18)0.0525 (19)0.0394 (17)0.0047 (15)0.0185 (14)0.0039 (13)
C110.083 (2)0.056 (2)0.0514 (19)0.0117 (18)0.0113 (17)−0.0073 (15)
C120.0553 (17)0.0495 (18)0.0379 (16)0.0036 (14)0.0185 (14)0.0064 (13)
C130.069 (2)0.058 (2)0.0458 (18)0.0074 (17)0.0093 (16)0.0041 (15)
C140.078 (2)0.062 (2)0.068 (2)0.0175 (19)0.0052 (19)0.0107 (18)
C150.094 (3)0.054 (2)0.077 (2)0.023 (2)0.013 (2)−0.0041 (19)
C160.073 (2)0.0531 (18)0.0303 (15)−0.0011 (16)0.0139 (14)0.0033 (13)
C170.075 (2)0.061 (2)0.0472 (19)−0.0101 (17)0.0248 (17)−0.0008 (15)
C180.078 (2)0.059 (2)0.0481 (19)−0.0122 (17)0.0143 (17)−0.0020 (15)
C190.0625 (19)0.0425 (17)0.0356 (16)0.0050 (15)0.0156 (15)0.0051 (13)
C200.0558 (18)0.0485 (17)0.0406 (17)0.0087 (15)0.0102 (14)0.0085 (13)
C210.0595 (19)0.063 (2)0.0448 (18)0.0008 (17)0.0104 (15)0.0038 (15)
C220.059 (2)0.078 (2)0.069 (2)−0.0022 (19)0.0041 (18)−0.0009 (19)
C230.063 (2)0.089 (3)0.071 (2)−0.008 (2)0.0235 (19)0.009 (2)
C240.074 (2)0.088 (3)0.057 (2)−0.002 (2)0.0279 (19)0.0067 (19)
N10.0656 (16)0.0576 (16)0.0482 (15)−0.0092 (13)0.0228 (13)−0.0068 (12)
N20.0680 (17)0.0611 (16)0.0325 (13)0.0014 (14)0.0155 (12)−0.0008 (11)
N30.0691 (16)0.0614 (16)0.0382 (14)−0.0151 (14)0.0142 (13)−0.0044 (12)
N40.0662 (16)0.0491 (14)0.0336 (13)−0.0013 (13)0.0140 (12)0.0002 (11)
N50.0698 (16)0.0537 (15)0.0357 (14)−0.0045 (13)0.0136 (13)0.0005 (11)
N60.0664 (17)0.0643 (17)0.0419 (14)0.0053 (14)0.0180 (13)0.0081 (12)
N70.124 (3)0.0640 (19)0.0637 (19)0.0083 (18)0.0209 (18)0.0063 (16)
C250.067 (2)0.0435 (18)0.075 (2)0.0036 (16)0.0286 (19)−0.0005 (17)
S20.0803 (7)0.1023 (8)0.0907 (8)0.0078 (6)−0.0037 (6)0.0145 (6)
N80.125 (3)0.077 (2)0.0556 (19)−0.029 (2)0.0210 (18)−0.0141 (15)
C260.049 (5)0.060 (5)0.046 (5)0.014 (4)0.006 (4)0.001 (4)
S10.065 (2)0.129 (4)0.137 (3)−0.031 (3)0.007 (2)−0.033 (3)
C26'0.038 (5)0.053 (5)0.034 (5)0.020 (5)0.006 (4)0.001 (4)
S1'0.072 (3)0.113 (4)0.089 (3)−0.031 (3)0.019 (2)−0.043 (2)
Zn10.0859 (3)0.0552 (2)0.0370 (2)−0.00799 (19)0.02056 (19)−0.00498 (16)
O1W0.159 (11)0.198 (14)0.117 (10)−0.065 (9)0.058 (8)−0.028 (8)

Geometric parameters (Å, °)

C1—C21.346 (4)C16—H16A0.9700
C1—N31.374 (4)C16—H16B0.9700
C1—H10.9300C17—C181.351 (4)
C2—N21.373 (4)C17—N41.371 (4)
C2—H20.9300C17—H170.9300
C3—N31.315 (3)C18—N51.360 (4)
C3—N21.359 (3)C18—H180.9300
C3—C41.463 (4)C19—N51.319 (3)
C4—N11.345 (3)C19—N41.361 (3)
C4—C51.382 (4)C19—C201.465 (4)
C5—C61.376 (4)C20—N61.351 (3)
C5—H50.9300C20—C211.379 (4)
C6—C71.369 (4)C21—C221.386 (4)
C6—H60.9300C21—H210.9300
C7—C81.372 (4)C22—C231.360 (4)
C7—H70.9300C22—H220.9300
C8—N11.321 (4)C23—C241.371 (4)
C8—H80.9300C23—H230.9300
C9—N21.461 (3)C24—N61.330 (4)
C9—C101.515 (4)C24—H240.9300
C9—H9A0.9700N1—Zn12.250 (2)
C9—H9B0.9700N3—Zn12.095 (2)
C10—C111.390 (4)N5—Zn1i2.112 (2)
C10—C121.394 (4)N6—Zn1i2.265 (2)
C11—C151.374 (4)N7—C251.151 (4)
C11—H110.9300N7—Zn12.105 (3)
C12—C131.389 (4)C25—S21.616 (4)
C12—C161.501 (4)N8—C261.130 (4)
C13—C141.371 (4)N8—Zn12.071 (3)
C13—H130.9300C26—S11.591 (4)
C14—C151.371 (4)C26'—S1'1.621 (4)
C14—H140.9300O1W—H1W0.8500
C15—H150.9300O1W—H2W0.8500
C16—N41.469 (3)
C2—C1—N3109.0 (3)C17—C18—H18125.3
C2—C1—H1125.5N5—C18—H18125.3
N3—C1—H1125.5N5—C19—N4110.0 (2)
C1—C2—N2106.8 (3)N5—C19—C20120.2 (2)
C1—C2—H2126.6N4—C19—C20129.8 (3)
N2—C2—H2126.6N6—C20—C21121.4 (3)
N3—C3—N2110.0 (3)N6—C20—C19111.8 (2)
N3—C3—C4120.1 (2)C21—C20—C19126.7 (3)
N2—C3—C4129.9 (3)C20—C21—C22118.7 (3)
N1—C4—C5121.3 (3)C20—C21—H21120.7
N1—C4—C3112.0 (2)C22—C21—H21120.7
C5—C4—C3126.8 (3)C23—C22—C21120.1 (3)
C6—C5—C4118.8 (3)C23—C22—H22119.9
C6—C5—H5120.6C21—C22—H22119.9
C4—C5—H5120.6C22—C23—C24117.8 (3)
C7—C6—C5119.7 (3)C22—C23—H23121.1
C7—C6—H6120.2C24—C23—H23121.1
C5—C6—H6120.2N6—C24—C23123.9 (3)
C6—C7—C8118.0 (3)N6—C24—H24118.0
C6—C7—H7121.0C23—C24—H24118.0
C8—C7—H7121.0C8—N1—C4118.5 (3)
N1—C8—C7123.5 (3)C8—N1—Zn1126.0 (2)
N1—C8—H8118.3C4—N1—Zn1112.71 (18)
C7—C8—H8118.3C3—N2—C2107.1 (2)
N2—C9—C10113.2 (2)C3—N2—C9129.6 (3)
N2—C9—H9A108.9C2—N2—C9123.2 (2)
C10—C9—H9A108.9C3—N3—C1107.1 (2)
N2—C9—H9B108.9C3—N3—Zn1115.93 (19)
C10—C9—H9B108.9C1—N3—Zn1136.7 (2)
H9A—C9—H9B107.7C19—N4—C17106.9 (2)
C11—C10—C12118.9 (3)C19—N4—C16129.7 (2)
C11—C10—C9121.7 (3)C17—N4—C16123.4 (2)
C12—C10—C9119.4 (3)C19—N5—C18107.1 (2)
C15—C11—C10121.1 (3)C19—N5—Zn1i116.53 (19)
C15—C11—H11119.4C18—N5—Zn1i134.4 (2)
C10—C11—H11119.4C24—N6—C20118.0 (3)
C13—C12—C10119.3 (3)C24—N6—Zn1i126.6 (2)
C13—C12—C16121.4 (3)C20—N6—Zn1i115.3 (2)
C10—C12—C16119.3 (2)C25—N7—Zn1140.6 (3)
C14—C13—C12120.7 (3)N7—C25—S2178.9 (3)
C14—C13—H13119.6C26—N8—Zn1170.9 (9)
C12—C13—H13119.6N8—C26—S1170.8 (12)
C15—C14—C13120.4 (3)N8—Zn1—N394.38 (10)
C15—C14—H14119.8N8—Zn1—N794.87 (13)
C13—C14—H14119.8N3—Zn1—N797.60 (11)
C14—C15—C11119.7 (3)N8—Zn1—N5ii96.53 (10)
C14—C15—H15120.2N3—Zn1—N5ii163.98 (9)
C11—C15—H15120.2N7—Zn1—N5ii93.14 (11)
N4—C16—C12114.5 (2)N8—Zn1—N1168.99 (10)
N4—C16—H16A108.6N3—Zn1—N174.61 (9)
C12—C16—H16A108.6N7—Zn1—N186.62 (11)
N4—C16—H16B108.6N5ii—Zn1—N194.28 (9)
C12—C16—H16B108.6N8—Zn1—N6ii88.30 (11)
H16A—C16—H16B107.6N3—Zn1—N6ii94.60 (9)
C18—C17—N4106.7 (3)N7—Zn1—N6ii167.12 (10)
C18—C17—H17126.6N5ii—Zn1—N6ii74.07 (9)
N4—C17—H17126.6N1—Zn1—N6ii92.65 (9)
C17—C18—N5109.3 (3)H1W—O1W—H2W105.1

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2W···S1iii0.852.683.30 (2)132

Symmetry codes: (iii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2287).

References

  • Brandenburg, K. & Putz, H. (2008). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Hu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, R.-Q. (2002). Inorg. Chem.41, 1391–1396. [PubMed]
  • Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc.126, 32–33. [PubMed]
  • Evans, O. R. & Lin, W. (2002). Acc. Chem. Res.35, 511–522. [PubMed]
  • Janiak, C. (2003). Dalton Trans. pp. 2781–2804.
  • Li, S.-L., Lan, Y.-Q., Ma, J.-F., Fu, Y.-M., Yang, J., Ping, G.-J., Liu, J. & Su, Z.-M. (2008). Cryst. Growth Des.8, 1610–1616.
  • Luan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J.12, 6281–6289. [PubMed]
  • Moulton, B. & Zaworotko, M. (2001). Chem. Rev.101, 1629–1658. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography