PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2017.
Published online 2010 July 14. doi:  10.1107/S1600536810027157
PMCID: PMC3007416

2-Chloro-N-isopropyl-N-phenyl­acetamide

Abstract

In the title compound, C11H14ClNO, the herbicide propachlor, there are significant differences between the three N—C bond lengths [N—Ccarbon­yl = 1.354 (3) Å, N—Cphen­yl = 1.444 (2) Å and N—Cisoprop­yl = 1.496 (3) Å], indicating the presence of π delocalization involving the carbonyl group. The N atom lies 0.074 (2) Å from the plane defined by the the three bonded C atoms.

Related literature

For studies of propachlor and its derivatives, see: Dhillon & Anderson (1972 [triangle]); Kleudgen (1980 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2017-scheme1.jpg

Experimental

Crystal data

  • C11H14ClNO
  • M r = 211.68
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2017-efi1.jpg
  • a = 11.9190 (11) Å
  • b = 7.8042 (8) Å
  • c = 12.3789 (13) Å
  • β = 98.963 (1)°
  • V = 1137.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 298 K
  • 0.47 × 0.45 × 0.44 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.870, T max = 0.878
  • 5426 measured reflections
  • 2004 independent reflections
  • 1501 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.111
  • S = 1.03
  • 2004 reflections
  • 130 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027157/zs2048sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027157/zs2048Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the PhD Programs Foundation of the Ministry of Education of China (No. 20090204120033)

supplementary crystallographic information

Comment

Propachlor (2-chloro-N-isopropyl-N-phenylacetamide) and its derivatives have been widely studied as a pre-emergent herbicide used to control broadleaf weeds and grasses (Dhillon et al., 1972; Kleudgen, 1980). Propachlor may also be used as a precursor in the synthesis of indole-2-one compounds and in the course of exploring new indole-2-one compounds, we synthesized the title compound C11H14ClNO (I), the structure of which is reported here.

In structure of (I) (Fig. 1), there are obvious differences between the three C—N bond lengths (N—Ccarbonyl, 1.354 (3) Å; N—Cphenyl, 1.444 (2) Å; N—Cisopropyl, 1.496 (3) Å, indicating the presence of π delocalization involving the carbonyl group. Also N1 lies close to the plane defined by the three bonded carbon atoms C1, C3 and C9 [0.074 (2) Å].

As expected, there are no classic hydrogen bonds in the structure (Fig. 2). However, there is a weak intermolecular aliphatic C11—H11A···O1i interaction [symmetry code: (i) -x + 1/2, y - 1/2, -z + 1/2] stabilizing the packing. This intermolecular hydrogen bond is characterized by the parameters 0.96 Å (C11—H11A) and 2.56 Å (H11A···O1i).

Experimental

N-Isopropylbenzenamine (1.00 g, 7.41 mmol) was dissolved in toluene (5.0 mL) and cooled to 273 K, after which a solution of 2-chloroacetyl chloride (0.90 g, 8.03 mmol) in toluene (5.0 mL) was slowly added over 0.5 h. with stirring. The mixture was then refluxed for 2 h. then slowly cooled to room temperature over 8 h. Colorless block crystals of (I) were formed (1.33 g, yield 85%).

Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—Haromatic = 0.93 %A and C—Haliphatic = 0.96–0.97 %A, with Uiso = 1.2Ueq(C), or 1.5Ueq(C) for CH3 groups.

Figures

Fig. 1.
The molecular comformation and atom numbering scheme for (I). Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The molecular packing of (I) viewed down the b axis of the unit cell.

Crystal data

C11H14ClNOF(000) = 448
Mr = 211.68Dx = 1.236 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2899 reflections
a = 11.9190 (11) Åθ = 2.2–25.0°
b = 7.8042 (8) ŵ = 0.30 mm1
c = 12.3789 (13) ÅT = 298 K
β = 98.963 (1)°Block, colorless
V = 1137.4 (2) Å30.47 × 0.45 × 0.44 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer2004 independent reflections
Radiation source: fine-focus sealed tube1501 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −14→12
Tmin = 0.870, Tmax = 0.878k = −9→8
5426 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.111w = 1/[σ2(Fo2) + (0.0469P)2 + 0.4408P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2004 reflectionsΔρmax = 0.21 e Å3
130 parametersΔρmin = −0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.079 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.57852 (5)0.22476 (9)0.44873 (5)0.0711 (3)
N10.25393 (14)0.3526 (2)0.40187 (13)0.0483 (4)
O10.40481 (14)0.4455 (2)0.32694 (12)0.0662 (5)
C10.36637 (17)0.3629 (3)0.39670 (16)0.0475 (5)
C20.44299 (18)0.2648 (3)0.48500 (18)0.0543 (6)
H2A0.40740.15660.49800.065*
H2B0.45200.33010.55250.065*
C30.21346 (16)0.2664 (3)0.49159 (15)0.0438 (5)
C40.17401 (18)0.0998 (3)0.47994 (18)0.0548 (6)
H40.17340.04230.41400.066*
C50.1354 (2)0.0186 (3)0.5666 (2)0.0674 (7)
H50.1097−0.09390.55920.081*
C60.1349 (2)0.1042 (4)0.6635 (2)0.0691 (7)
H60.10730.05040.72110.083*
C70.1751 (2)0.2691 (4)0.67528 (19)0.0701 (7)
H70.17570.32600.74140.084*
C80.21471 (19)0.3513 (3)0.58983 (17)0.0586 (6)
H80.24200.46290.59830.070*
C90.1714 (2)0.4559 (3)0.32459 (18)0.0641 (7)
H90.20830.48500.26150.077*
C100.1415 (3)0.6210 (3)0.3759 (3)0.0939 (10)
H10A0.10330.59640.43680.141*
H10B0.09260.68750.32280.141*
H10C0.20970.68450.40060.141*
C110.0654 (3)0.3538 (4)0.2827 (3)0.1013 (11)
H11A0.08650.24710.25300.152*
H11B0.01860.41790.22670.152*
H11C0.02400.33180.34180.152*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0516 (4)0.0819 (5)0.0834 (5)0.0023 (3)0.0212 (3)−0.0015 (3)
N10.0526 (10)0.0511 (10)0.0426 (9)0.0058 (8)0.0115 (7)0.0076 (8)
O10.0760 (11)0.0647 (11)0.0635 (9)−0.0032 (8)0.0288 (8)0.0168 (8)
C10.0592 (13)0.0403 (11)0.0455 (11)−0.0013 (9)0.0157 (10)−0.0021 (9)
C20.0477 (12)0.0591 (14)0.0588 (13)0.0012 (10)0.0167 (10)0.0089 (11)
C30.0410 (10)0.0493 (12)0.0420 (10)0.0039 (9)0.0091 (8)0.0049 (9)
C40.0519 (12)0.0549 (14)0.0582 (13)−0.0021 (10)0.0106 (10)−0.0024 (11)
C50.0572 (14)0.0606 (15)0.0859 (17)−0.0076 (11)0.0157 (12)0.0164 (14)
C60.0581 (14)0.090 (2)0.0622 (15)−0.0004 (13)0.0178 (11)0.0268 (15)
C70.0761 (17)0.091 (2)0.0456 (13)−0.0016 (14)0.0178 (12)0.0005 (13)
C80.0685 (14)0.0576 (14)0.0514 (12)−0.0041 (11)0.0150 (10)−0.0015 (11)
C90.0692 (15)0.0715 (17)0.0521 (12)0.0177 (12)0.0110 (11)0.0201 (12)
C100.095 (2)0.0512 (16)0.122 (2)0.0114 (15)−0.0266 (18)0.0041 (16)
C110.112 (2)0.078 (2)0.094 (2)0.0226 (18)−0.0480 (18)−0.0207 (17)

Geometric parameters (Å, °)

Cl1—C21.771 (2)C6—C71.374 (4)
N1—C11.354 (3)C6—H60.9300
N1—C31.444 (2)C7—C81.381 (3)
N1—C91.496 (3)C7—H70.9300
O1—C11.222 (2)C8—H80.9300
C1—C21.518 (3)C9—C101.503 (4)
C2—H2A0.9700C9—C111.515 (4)
C2—H2B0.9700C9—H90.9800
C3—C41.383 (3)C10—H10A0.9600
C3—C81.383 (3)C10—H10B0.9600
C4—C51.385 (3)C10—H10C0.9600
C4—H40.9300C11—H11A0.9600
C5—C61.373 (4)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C1—N1—C3121.03 (16)C6—C7—C8120.6 (2)
C1—N1—C9119.66 (17)C6—C7—H7119.7
C3—N1—C9118.53 (16)C8—C7—H7119.7
O1—C1—N1123.2 (2)C7—C8—C3119.5 (2)
O1—C1—C2121.67 (19)C7—C8—H8120.2
N1—C1—C2115.15 (16)C3—C8—H8120.2
C1—C2—Cl1112.14 (14)N1—C9—C10111.53 (19)
C1—C2—H2A109.2N1—C9—C11111.5 (2)
Cl1—C2—H2A109.2C10—C9—C11110.8 (2)
C1—C2—H2B109.2N1—C9—H9107.6
Cl1—C2—H2B109.2C10—C9—H9107.6
H2A—C2—H2B107.9C11—C9—H9107.6
C4—C3—C8119.95 (19)C9—C10—H10A109.5
C4—C3—N1120.46 (18)C9—C10—H10B109.5
C8—C3—N1119.59 (19)H10A—C10—H10B109.5
C3—C4—C5119.9 (2)C9—C10—H10C109.5
C3—C4—H4120.1H10A—C10—H10C109.5
C5—C4—H4120.1H10B—C10—H10C109.5
C6—C5—C4120.1 (2)C9—C11—H11A109.5
C6—C5—H5119.9C9—C11—H11B109.5
C4—C5—H5119.9H11A—C11—H11B109.5
C5—C6—C7120.0 (2)C9—C11—H11C109.5
C5—C6—H6120.0H11A—C11—H11C109.5
C7—C6—H6120.0H11B—C11—H11C109.5
C3—N1—C1—O1−174.27 (19)N1—C3—C4—C5−179.95 (19)
C9—N1—C1—O1−4.6 (3)C3—C4—C5—C60.8 (3)
C3—N1—C1—C25.3 (3)C4—C5—C6—C7−1.5 (4)
C9—N1—C1—C2174.98 (19)C5—C6—C7—C81.0 (4)
O1—C1—C2—Cl1−20.0 (3)C6—C7—C8—C30.1 (4)
N1—C1—C2—Cl1160.48 (15)C4—C3—C8—C7−0.8 (3)
C1—N1—C3—C4−98.8 (2)N1—C3—C8—C7179.5 (2)
C9—N1—C3—C491.4 (2)C1—N1—C9—C10−96.3 (2)
C1—N1—C3—C881.0 (3)C3—N1—C9—C1073.7 (3)
C9—N1—C3—C8−88.8 (2)C1—N1—C9—C11139.2 (2)
C8—C3—C4—C50.3 (3)C3—N1—C9—C11−50.8 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2048).

References

  • Bruker (1997). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dhillon, N. S. & Anderson, J. L. (1972). Weed Res.12, 182–189.
  • Kleudgen, H. K. (1980). Weed Res.20, 41–46.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography