PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2190.
Published online 2010 July 31. doi:  10.1107/S1600536810029430
PMCID: PMC3007414

6-Benzyl­oxycoumarin

Abstract

In the title compound, 6-benz­yloxy-2H-1-benzopyran-2-one, C16H12O3, the coumarin unit and benzyl plane in the mol­ecule are perpendicular to each other [86.92 (7)°]. The crystal packing is stabilized by π–π stacking inter­actions, with an inter­planar separation between inversion-related coumarin units of 3.618 (3) Å. The crystal structure shows inter­molecular C—H(...)O hydrogen bonding between neighboring mol­ecules.

Related literature

For general background to coumarin, see: Adfa et al. (2010 [triangle]); Gunnewegh et al. (1995 [triangle]); Li et al. (1998 [triangle]); Murray et al. (1982 [triangle]); Schönberg & Latif (1954 [triangle]). For related compounds, see: Chinnakali et al. (1998 [triangle]); Jasinski et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2190-scheme1.jpg

Experimental

Crystal data

  • C16H12O3
  • M r = 252.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2190-efi1.jpg
  • a = 20.391 (12) Å
  • b = 6.732 (4) Å
  • c = 18.844 (11) Å
  • β = 94.833 (8)°
  • V = 2578 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Rigaku AFC7R Mercury CCD diffractometer
  • 10197 measured reflections
  • 2912 independent reflections
  • 2070 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.075
  • wR(F 2) = 0.190
  • S = 1.20
  • 2912 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001 [triangle]); cell refinement: CrystalClear; data reduction: Yadokari-XG 2009 (Wakita, 2001 [triangle]; Kabuto et al., 2009 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Yadokari-XG 2009 and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, General. DOI: 10.1107/S1600536810029430/zl2289sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029430/zl2289Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Coumarin and its derivatives have been found to exhibit various biological and pharmacological activities, such as molluscicidal (Schönberg and Latif, 1954), termiticidal (Adfa et al., 2010), rodenticidal, anthelmintic, antibacterial, antioxidant, anti-inflammatory, and anti-cancer, and they have been used as anticoagulant agents and fluorescent brighteners (Murray et al., 1982; Gunnewegh et al., 1995; Li et al., 1998). The title compound is one of the derivatives of coumarin. In order to investigate the structure activity relationship (SAR) of the compound for biological activities, it is essential to determine the configuration of 6-benzyloxycoumarin.

The molecular structure of the title compound is illustrated in Fig. 1. The coumarin moiety and benzyl planes (r.m.s deviations 0.039 and 0.017 Å) in the molecule are perpendicular to each other with a dihedral angle between the plane of the atoms O1–O3, C1–C9 and that of C10–C15 of 86.92 (7)°. The structure shows intermolecular C—H···O hydrogen bonding between four neighboring molecules (Table 1 and Fig. 2): C3···O2i, C5···O1i and C8i···O3 [symmetry code (i) x, 1 + y, z]; C3ii···O2, C5ii···O1 and C8···O3ii [symmetry code (ii) x, -1 + y, z]; C2···O2iii and C2iii···O2 [symmetry code (iii) 1/2 - x, -1/2 - y, -z]; C16···O2iv and C16iv···O2 [symmetry code (iv) -x, -y, -z]. There also exist π–π stacking interactions between the coumarin moieties with an interplanar separation of 3.618 (3) Å (based on all atoms but the phenyl ring C atoms, symmetry operator for the second molecule iv). Similar structural features are also observed in other coumarin derivatives (Chinnakali et al., 1998; Jasinski et al., 2003).

Experimental

A mixture of 6-hydroxycoumarin (30 mg, 0.19 mmol), benzyl bromide (43.8 cm3, 0.37 mmol), and potassium carbonate (51 mg, 0.37 mmol) in DMF (5.0 cm3) was stirred at 353 K for 1.5 h. The reaction mixture was extracted with ethyl acetate and washed with water. The organic layer was dried over sodium sulfate and evaporated to dryness. The residue was purified by column chromatography on silica gel with n-hexane/ethyl acetate (7:3) to give the title compound (40.3 mg, 86.4%) as colourless crystals, m.p. 385 K. 1H-NMR (600 MHz, CDCl3): δ 5.10 (2H, s, CH2), 6.42 (1H, d, J = 9.6 Hz), 6.99 (1H, d, J = 2.8 Hz), 7.18 (1H, dd, J = 8.9 and 2.8 Hz), 7.26 (1H, d, J = 8.9 Hz), 7.34–7.44 (5H, m, Ar), 7.63 (1H, d, J = 9.6 Hz); 13C-NMR (150 MHz, CDCl3): δ 70.8, 111.5, 117.2, 118.1, 119.3, 120.3, 127.6, 128.4, 128.8, 136.4, 143.3, 148.7, 155.3, 161.1. Single crystals of 6-benzyloxycoumarin were grown by recrystallization from a solution in chloroform-hexane (10:3).

Refinement

C-bound H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) for the H atoms.

Figures

Fig. 1.
The molecular structure and atom-numbering scheme of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
Packing diagram of the title compound viewed perpendicular to the coumarin plane. The C—H···O hydrogen bonding interactions between the neighboring molecules are shown as dashed lines.

Crystal data

C16H12O3F(000) = 1056
Mr = 252.26Dx = 1.300 Mg m3
Monoclinic, C2/cMelting point: 385 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71070 Å
a = 20.391 (12) ÅCell parameters from 2417 reflections
b = 6.732 (4) Åθ = 3.1–27.5°
c = 18.844 (11) ŵ = 0.09 mm1
β = 94.833 (8)°T = 296 K
V = 2578 (3) Å3Prism, colourless
Z = 80.30 × 0.10 × 0.10 mm

Data collection

Rigaku AFC7R Mercury CCD diffractometer2070 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.039
graphiteθmax = 27.5°, θmin = 3.1°
Detector resolution: 14.6199 pixels mm-1h = −23→26
dtintegrate.ref scansk = −7→8
10197 measured reflectionsl = −24→24
2912 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.20w = 1/[σ2(Fo2) + (0.0813P)2 + 0.4589P] where P = (Fo2 + 2Fc2)/3
2912 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.08714 (7)−0.28238 (19)0.06726 (8)0.0517 (4)
C10.14413 (11)−0.2635 (3)0.03418 (12)0.0499 (5)
O20.17437 (9)−0.4146 (2)0.02481 (10)0.0698 (5)
C20.16227 (12)−0.0660 (3)0.01380 (13)0.0565 (6)
H20.1997−0.0486−0.01050.068*
C30.12678 (11)0.0923 (3)0.02892 (13)0.0545 (6)
H30.13950.21760.01450.065*
C40.06915 (10)0.0725 (3)0.06722 (11)0.0441 (5)
C50.03075 (11)0.2315 (3)0.08766 (12)0.0499 (6)
H50.04180.36050.07570.060*
C6−0.02290 (11)0.1989 (3)0.12518 (13)0.0505 (5)
C7−0.04011 (11)0.0050 (3)0.14279 (13)0.0586 (6)
H7−0.0765−0.01730.16830.070*
C8−0.00300 (11)−0.1532 (3)0.12231 (13)0.0552 (6)
H8−0.0144−0.28230.13380.066*
C90.05060 (10)−0.1191 (3)0.08502 (11)0.0438 (5)
O3−0.05721 (8)0.3649 (2)0.14299 (11)0.0687 (5)
C10−0.11309 (13)0.3365 (3)0.18242 (16)0.0676 (7)
H10A−0.09950.27850.22840.081*
H10B−0.14380.24610.15700.081*
C11−0.14576 (11)0.5327 (3)0.19239 (12)0.0512 (6)
C12−0.13279 (13)0.6408 (3)0.25384 (13)0.0612 (6)
H12−0.10170.59470.28890.073*
C13−0.16522 (14)0.8164 (3)0.26425 (14)0.0652 (7)
H13−0.15610.88720.30630.078*
C14−0.21066 (13)0.8871 (3)0.21321 (14)0.0609 (7)
H14−0.23261.00560.22040.073*
C15−0.22378 (13)0.7825 (4)0.15136 (14)0.0676 (7)
H15−0.25460.83030.11630.081*
C16−0.19132 (14)0.6060 (3)0.14083 (13)0.0633 (7)
H16−0.20030.53610.09860.076*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0507 (9)0.0364 (7)0.0700 (10)0.0055 (6)0.0165 (7)0.0010 (6)
C10.0495 (13)0.0468 (11)0.0544 (13)0.0074 (9)0.0111 (10)−0.0030 (9)
O20.0723 (12)0.0497 (9)0.0911 (13)0.0141 (8)0.0283 (10)−0.0049 (8)
C20.0532 (14)0.0518 (12)0.0673 (15)0.0009 (10)0.0221 (11)0.0011 (10)
C30.0528 (14)0.0423 (11)0.0710 (15)−0.0025 (9)0.0213 (11)0.0034 (10)
C40.0417 (12)0.0379 (10)0.0530 (12)−0.0008 (8)0.0064 (9)0.0019 (8)
C50.0471 (13)0.0324 (9)0.0716 (15)−0.0010 (8)0.0139 (11)0.0032 (9)
C60.0444 (12)0.0366 (10)0.0719 (15)0.0018 (8)0.0132 (10)−0.0017 (9)
C70.0472 (13)0.0428 (11)0.0891 (17)0.0001 (9)0.0253 (12)0.0079 (11)
C80.0497 (13)0.0350 (10)0.0832 (16)−0.0009 (8)0.0201 (11)0.0081 (10)
C90.0428 (12)0.0329 (9)0.0559 (12)0.0027 (8)0.0062 (9)0.0009 (8)
O30.0594 (11)0.0386 (8)0.1138 (14)0.0039 (7)0.0417 (10)0.0007 (8)
C100.0616 (16)0.0473 (12)0.099 (2)0.0020 (11)0.0363 (14)0.0014 (12)
C110.0481 (13)0.0437 (11)0.0648 (14)0.0003 (9)0.0223 (11)−0.0001 (10)
C120.0580 (15)0.0583 (13)0.0663 (16)0.0040 (11)−0.0015 (12)−0.0023 (11)
C130.0728 (18)0.0573 (13)0.0664 (15)0.0008 (12)0.0112 (13)−0.0144 (12)
C140.0550 (15)0.0485 (12)0.0829 (18)0.0063 (10)0.0280 (13)0.0006 (11)
C150.0596 (16)0.0721 (16)0.0709 (17)0.0104 (12)0.0045 (13)0.0135 (13)
C160.0697 (17)0.0645 (14)0.0568 (14)0.0001 (12)0.0115 (12)−0.0070 (11)

Geometric parameters (Å, °)

O1—C11.370 (3)C8—H80.9300
O1—C91.385 (2)O3—C101.425 (3)
C1—O21.210 (2)C10—C111.499 (3)
C1—C21.440 (3)C10—H10A0.9700
C2—C31.333 (3)C10—H10B0.9700
C2—H20.9300C11—C121.374 (3)
C3—C41.436 (3)C11—C161.378 (3)
C3—H30.9300C12—C131.377 (3)
C4—C91.393 (3)C12—H120.9300
C4—C51.399 (3)C13—C141.364 (4)
C5—C61.369 (3)C13—H130.9300
C5—H50.9300C14—C151.369 (4)
C6—O31.375 (2)C14—H140.9300
C6—C71.399 (3)C15—C161.382 (3)
C7—C81.380 (3)C15—H150.9300
C7—H70.9300C16—H160.9300
C8—C91.368 (3)
C1—O1—C9122.04 (15)O1—C9—C4120.94 (18)
O2—C1—O1116.78 (18)C6—O3—C10117.63 (16)
O2—C1—C2126.2 (2)O3—C10—C11109.29 (17)
O1—C1—C2116.97 (17)O3—C10—H10A109.8
C3—C2—C1121.7 (2)C11—C10—H10A109.8
C3—C2—H2119.2O3—C10—H10B109.8
C1—C2—H2119.2C11—C10—H10B109.8
C2—C3—C4121.00 (18)H10A—C10—H10B108.3
C2—C3—H3119.5C12—C11—C16118.4 (2)
C4—C3—H3119.5C12—C11—C10121.1 (2)
C9—C4—C5118.17 (19)C16—C11—C10120.5 (2)
C9—C4—C3117.23 (17)C11—C12—C13120.9 (2)
C5—C4—C3124.61 (18)C11—C12—H12119.5
C6—C5—C4120.65 (18)C13—C12—H12119.5
C6—C5—H5119.7C14—C13—C12120.3 (2)
C4—C5—H5119.7C14—C13—H13119.8
C5—C6—O3116.17 (17)C12—C13—H13119.8
C5—C6—C7119.94 (19)C13—C14—C15119.6 (2)
O3—C6—C7123.9 (2)C13—C14—H14120.2
C8—C7—C6119.9 (2)C15—C14—H14120.2
C8—C7—H7120.0C14—C15—C16120.2 (2)
C6—C7—H7120.0C14—C15—H15119.9
C9—C8—C7119.67 (18)C16—C15—H15119.9
C9—C8—H8120.2C11—C16—C15120.6 (2)
C7—C8—H8120.2C11—C16—H16119.7
C8—C9—O1117.41 (16)C15—C16—H16119.7
C8—C9—C4121.62 (18)
C9—O1—C1—O2175.73 (19)C5—C4—C9—C8−0.9 (3)
C9—O1—C1—C2−4.4 (3)C3—C4—C9—C8179.1 (2)
O2—C1—C2—C3−177.5 (3)C5—C4—C9—O1−179.01 (18)
O1—C1—C2—C32.7 (3)C3—C4—C9—O11.0 (3)
C1—C2—C3—C40.8 (4)C5—C6—O3—C10−179.6 (2)
C2—C3—C4—C9−2.7 (3)C7—C6—O3—C100.7 (4)
C2—C3—C4—C5177.3 (2)C6—O3—C10—C11−176.5 (2)
C9—C4—C5—C61.1 (3)O3—C10—C11—C12−96.5 (3)
C3—C4—C5—C6−178.9 (2)O3—C10—C11—C1685.6 (3)
C4—C5—C6—O3179.72 (19)C16—C11—C12—C131.0 (4)
C4—C5—C6—C7−0.6 (4)C10—C11—C12—C13−176.9 (2)
C5—C6—C7—C80.0 (4)C11—C12—C13—C14−0.5 (4)
O3—C6—C7—C8179.6 (2)C12—C13—C14—C15−0.2 (4)
C6—C7—C8—C90.2 (4)C13—C14—C15—C160.2 (4)
C7—C8—C9—O1178.4 (2)C12—C11—C16—C15−1.0 (4)
C7—C8—C9—C40.3 (4)C10—C11—C16—C15177.0 (2)
C1—O1—C9—C8−175.6 (2)C14—C15—C16—C110.3 (4)
C1—O1—C9—C42.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.623.472 (3)153
C3—H3···O2ii0.932.583.461 (3)159
C5—H5···O1ii0.932.593.501 (3)168
C8—H8···O3iii0.932.543.460 (3)170
C16—H16···O2iv0.932.563.421 (3)154

Symmetry codes: (i) −x+1/2, −y−1/2, −z; (ii) x, y+1, z; (iii) x, y−1, z; (iv) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2289).

References

  • Adfa, M., Yoshimura, T., Komura, K. & Koketsu, M. (2010). J. Chem. Ecol.36, 720–726. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Chinnakali, K., Fun, H.-K., Sriraghavan, K. & Ramakrishnan, V. T. (1998). Acta Cryst. C54, 542–544.
  • Gunnewegh, E. A., Hoefnagel, A. J. & van Bekkum, H. (1995). J. Mol. Catal. A Chem.100, 87–92.
  • Jasinski, J. P., Jasinski, J. M., Li, Y. & Crosby, D. J. (2003). Acta Cryst. E59, o153–o154.
  • Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.
  • Li, T.-S., Zhang, Z.-H., Yang, F. & Fu, C.-G. (1998). J. Chem. Res. (S), pp. 38–39.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Murray, R. D. H., Mendez, J. & Brown, S. A. (1982). The Natural Coumarins (Occurrence, Chemistry and Biochemistry) New York: John Wiley & Sons.
  • Rigaku/MSC (2001). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Schönberg, A. & Latif, N. (1954). J. Am. Chem. Soc.76, 6208–6210.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wakita, K. (2001). Yadokari-XG Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography