PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2145.
Published online 2010 July 31. doi:  10.1107/S1600536810029582
PMCID: PMC3007413

2-Benzoyl-2H-1,4-benzothia­zin-3(4H)-one

Abstract

In the title compound, C15H11NO2S, the dihedral angle between the aromatic rings is 80.35 (7)°. The heterocyclic six-membered ring is not planar: the puckering parameters of this ring are Q = 0.5308 (15) Å, θ = 63.11 (18) and ϕ = 23.5 (2)°. The mol­ecules are linked into inversion dimers with R 2 2(8) ring motifs by pairs of N—H(...)O hydrogen bonds. The dimers are inter­linked into polymeric sheets extending parallel to the bc plane by C—H(...)O hydrogen bonds, generating R 2 1(7) ring motifs. π–π inter­actions occur between the benzoyl phenyl rings with centroid–centroid separations of 3.9187 (15) Å.

Related literature

For puckering parameters, see: Cremer & Pople (1975 [triangle]). For the synthesis and anti­microbial activity of benzimidazole derivatives, see: Güven et al. (2007 [triangle]): Nofal et al. (2002 [triangle]). For related structures, see: Beryozkina et al. (2004 [triangle]): Kumaradhas & Nirmala (1997 [triangle]): Zhang et al. (2008 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2145-scheme1.jpg

Experimental

Crystal data

  • C15H11NO2S
  • M r = 269.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2145-efi1.jpg
  • a = 9.1323 (3) Å
  • b = 15.2893 (4) Å
  • c = 10.5214 (4) Å
  • β = 114.669 (1)°
  • V = 1334.99 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 296 K
  • 0.25 × 0.20 × 0.10 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.939, T max = 0.950
  • 10387 measured reflections
  • 2399 independent reflections
  • 2064 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.103
  • S = 1.04
  • 2399 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810029582/si2280sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029582/si2280Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

DS is grateful to the Higher Education Commission (Pakistan) for funding of this project and Professor Dr Islam Ullah Khan for providing research facilities at Government College University, Lahore, Pakistan.

supplementary crystallographic information

Comment

Benzothiazin molecules exhibit a broad spectrum of biological activity such as antifungal (Güven et al., 2007) and antibacterial (Nofal et al., 2002) properties. Our group is engaged in preparation and evaluation of biological activities of such type of compounds.

The crystal structures of (II) i.e., 2-(2-(4-bromophenyl)-2-oxoethyl)-4H-benzo-1,4-thiazin-3-one (Beryozkina et al., 2004), (III) 2-(4-chlorobenzoylmethyl)-2H-1,4-benzothiazin-3(4H)-one (Zhang et al., 2008) and (IV) (±)-2-(hydroxy(4-methoxyphenyl)methyl)-2H-1,4-benzothiazin- 3(4H)-one monohydrate (Kumaradhas & Nirmala et al., 1997) have been published which are related to title compound (I), (Fig. 1).

In (I), the benzene rings A (C1—C6) and B (C10—C15) are planar with r. m. s. deviations of 0.0045 and 0.0084 Å, respectively. The dihedral angle between A/B is 80.35 (7)°. The heterocyclic six membered ring C (C8/C9/N1/C10/C11/S1) fused with phenyl ring group B is not planar. The confirmation of this ring may be described by the puckering parameters (Cremer & Pople, 1975): Q = 0.5308 (15) Å, θ = 63.11 (18)°, [var phi] = 23.5 (2)°. The molecules are stabilized in the form of dimers (Fig. 2) due to N—H···O type of H-bondings (Table 1) with R22(8) ring motifs (Bernstein et al., 1995). The dimers are interlinked in the form of polymeric sheets extending parallel to bc-plane due to C—H···O type of H-bondings (Table 1, Fig. 2) and complete R21(7) ring motifs. There exist π–π interaction between the centroids of carbonyl containing phenyl rings at a separation of 3.9187 (15) Å [symmetry code: -x, 1 - y, 1 - z].

Experimental

2-Aminothiophenol (0.01 M, 1.08 ml) and ethyl benzoyl acetate (0.01 M, 1.73) were added to 5 ml dimethylsulfoxide. Resulting mixture was refluxed for 1 h and left overnight at room temperature. The separated solid was filtered, washed with petroleum ether and recrystallized with methanol to affoard light yellow plates.

Refinement

All H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.
Fig. 2.
The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers which are interlinked in the form of polymeric sheets. The H-atoms not involved in H-bodings are omitted for clarity.

Crystal data

C15H11NO2SF(000) = 560
Mr = 269.31Dx = 1.340 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2064 reflections
a = 9.1323 (3) Åθ = 3.4–25.3°
b = 15.2893 (4) ŵ = 0.24 mm1
c = 10.5214 (4) ÅT = 296 K
β = 114.669 (1)°Plate, light yellow
V = 1334.99 (8) Å30.25 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer2399 independent reflections
Radiation source: fine-focus sealed tube2064 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 3.4°
ω scansh = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −18→18
Tmin = 0.939, Tmax = 0.950l = −12→12
10387 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.046P)2 + 0.5415P] where P = (Fo2 + 2Fc2)/3
2399 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1−0.02233 (6)0.25059 (3)0.25961 (5)0.0528 (2)
O10.07429 (16)0.26350 (9)0.61431 (13)0.0569 (4)
O2−0.15131 (15)0.08259 (8)0.46234 (17)0.0603 (5)
N10.08715 (16)0.09439 (9)0.45062 (15)0.0419 (4)
C1−0.1244 (2)0.36835 (10)0.49255 (17)0.0399 (5)
C2−0.2555 (2)0.39269 (12)0.3713 (2)0.0508 (6)
C3−0.3331 (3)0.47100 (14)0.3657 (3)0.0720 (8)
C4−0.2798 (3)0.52592 (15)0.4793 (3)0.0827 (10)
C5−0.1488 (3)0.50307 (15)0.5989 (3)0.0795 (9)
C6−0.0712 (3)0.42488 (13)0.6065 (2)0.0584 (7)
C7−0.04028 (19)0.28361 (10)0.50775 (16)0.0372 (5)
C8−0.09851 (19)0.21947 (10)0.38628 (16)0.0365 (5)
C9−0.05515 (19)0.12647 (10)0.43619 (18)0.0401 (5)
C100.2099 (2)0.13817 (11)0.42926 (18)0.0402 (5)
C110.1776 (2)0.21359 (12)0.34898 (19)0.0470 (6)
C120.3019 (3)0.25556 (14)0.3316 (3)0.0678 (9)
C130.4547 (3)0.22130 (18)0.3895 (3)0.0782 (10)
C140.4862 (3)0.14499 (16)0.4662 (3)0.0672 (8)
C150.3646 (2)0.10353 (13)0.4873 (2)0.0505 (6)
H10.105550.040560.476000.0503*
H2−0.291160.356140.293590.0609*
H3−0.421860.486630.284660.0864*
H4−0.332520.578600.475070.0992*
H5−0.112110.540720.675290.0952*
H60.017090.409710.688260.0701*
H8−0.216320.223310.340390.0439*
H120.281950.307240.280490.0813*
H130.537680.249770.376890.0939*
H140.589650.121590.503660.0807*
H150.385780.052520.540100.0606*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0689 (4)0.0489 (3)0.0425 (3)0.0067 (2)0.0251 (2)0.0100 (2)
O10.0513 (8)0.0588 (8)0.0406 (7)0.0149 (6)−0.0005 (6)−0.0002 (6)
O20.0459 (7)0.0373 (7)0.1062 (12)0.0049 (6)0.0402 (8)0.0184 (7)
N10.0378 (7)0.0277 (7)0.0595 (9)0.0014 (6)0.0196 (7)0.0057 (6)
C10.0436 (9)0.0314 (8)0.0425 (9)−0.0020 (7)0.0157 (7)0.0031 (7)
C20.0540 (11)0.0365 (9)0.0502 (10)0.0051 (8)0.0103 (9)0.0046 (8)
C30.0762 (15)0.0488 (12)0.0743 (14)0.0220 (11)0.0149 (12)0.0147 (11)
C40.112 (2)0.0438 (12)0.0907 (18)0.0277 (13)0.0407 (16)0.0041 (12)
C50.114 (2)0.0478 (12)0.0713 (15)0.0101 (13)0.0334 (14)−0.0125 (11)
C60.0721 (13)0.0466 (11)0.0477 (10)0.0033 (10)0.0163 (10)−0.0022 (8)
C70.0359 (9)0.0358 (9)0.0365 (8)−0.0010 (7)0.0119 (7)0.0046 (7)
C80.0334 (8)0.0314 (8)0.0388 (8)0.0014 (6)0.0092 (7)0.0035 (6)
C90.0354 (9)0.0310 (8)0.0513 (10)−0.0004 (7)0.0154 (7)0.0032 (7)
C100.0412 (9)0.0362 (9)0.0468 (9)−0.0054 (7)0.0220 (7)−0.0101 (7)
C110.0581 (11)0.0420 (10)0.0508 (10)−0.0057 (8)0.0326 (9)−0.0062 (8)
C120.0860 (17)0.0564 (13)0.0891 (16)−0.0114 (11)0.0645 (14)−0.0042 (11)
C130.0770 (16)0.0757 (16)0.113 (2)−0.0253 (13)0.0704 (16)−0.0254 (15)
C140.0474 (11)0.0784 (16)0.0876 (16)−0.0081 (10)0.0398 (11)−0.0316 (13)
C150.0437 (10)0.0492 (10)0.0607 (11)0.0002 (8)0.0239 (9)−0.0144 (9)

Geometric parameters (Å, °)

S1—C81.8057 (18)C10—C151.389 (3)
S1—C111.762 (2)C10—C111.386 (2)
O1—C71.211 (2)C11—C121.381 (3)
O2—C91.224 (2)C12—C131.372 (4)
N1—C91.337 (2)C13—C141.379 (4)
N1—C101.402 (2)C14—C151.375 (4)
N1—H10.8600C2—H20.9300
C1—C61.391 (3)C3—H30.9300
C1—C71.481 (2)C4—H40.9300
C1—C21.387 (3)C5—H50.9300
C2—C31.380 (3)C6—H60.9300
C3—C41.373 (4)C8—H80.9800
C4—C51.371 (4)C12—H120.9300
C5—C61.375 (3)C13—H130.9300
C7—C81.520 (2)C14—H140.9300
C8—C91.510 (2)C15—H150.9300
S1···O13.4635 (14)C11···O13.386 (2)
S1···N13.0108 (15)C14···S1ii3.505 (3)
S1···C23.567 (2)C15···S1ii3.432 (2)
S1···C15i3.432 (2)C2···H82.6500
S1···O1i3.3545 (16)C2···H13iv2.9000
S1···C14i3.505 (3)C8···H22.6400
S1···H23.0800C9···H1iii2.8200
O1···S13.4635 (14)C9···H3v3.1000
O1···N13.136 (2)H1···H152.3700
O1···C103.318 (2)H1···O2iii1.9800
O1···C113.386 (2)H1···C9iii2.8200
O1···S1ii3.3545 (16)H1···H1iii2.5100
O1···C8ii3.170 (2)H2···S13.0800
O2···N1iii2.8383 (19)H2···C82.6400
O1···H62.4900H2···H82.1300
O1···H8ii2.3600H2···O1i2.5500
O1···H2ii2.5500H3···N1vi2.8300
O2···H14iv2.6500H3···C9vi3.1000
O2···H1iii1.9800H6···O12.4900
N1···S13.0108 (15)H8···C22.6500
N1···O13.136 (2)H8···H22.1300
N1···O2iii2.8383 (19)H8···H13iv2.4700
N1···H3v2.8300H8···O1i2.3600
C2···S13.567 (2)H13···C2vii2.9000
C7···C103.524 (3)H13···H8vii2.4700
C8···O1i3.170 (2)H14···O2vii2.6500
C10···O13.318 (2)H15···H12.3700
C10···C73.524 (3)
C8—S1—C1198.87 (9)S1—C11—C12120.40 (16)
C9—N1—C10127.66 (14)C11—C12—C13120.2 (2)
C10—N1—H1116.00C12—C13—C14120.5 (3)
C9—N1—H1116.00C13—C14—C15120.0 (3)
C2—C1—C7122.95 (15)C10—C15—C14119.7 (2)
C2—C1—C6118.88 (17)C1—C2—H2120.00
C6—C1—C7118.16 (16)C3—C2—H2120.00
C1—C2—C3120.18 (19)C2—C3—H3120.00
C2—C3—C4120.3 (2)C4—C3—H3120.00
C3—C4—C5120.0 (2)C3—C4—H4120.00
C4—C5—C6120.4 (2)C5—C4—H4120.00
C1—C6—C5120.3 (2)C4—C5—H5120.00
O1—C7—C1122.07 (15)C6—C5—H5120.00
O1—C7—C8118.58 (15)C1—C6—H6120.00
C1—C7—C8119.35 (14)C5—C6—H6120.00
S1—C8—C7110.07 (12)S1—C8—H8108.00
C7—C8—C9111.48 (13)C7—C8—H8108.00
S1—C8—C9112.26 (12)C9—C8—H8108.00
O2—C9—C8119.05 (16)C11—C12—H12120.00
N1—C9—C8119.09 (15)C13—C12—H12120.00
O2—C9—N1121.86 (15)C12—C13—H13120.00
C11—C10—C15120.25 (18)C14—C13—H13120.00
N1—C10—C11120.91 (17)C13—C14—H14120.00
N1—C10—C15118.82 (16)C15—C14—H14120.00
C10—C11—C12119.31 (19)C10—C15—H15120.00
S1—C11—C10120.12 (15)C14—C15—H15120.00
C11—S1—C8—C776.58 (13)O1—C7—C8—S1−99.48 (17)
C11—S1—C8—C9−48.23 (14)O1—C7—C8—C925.8 (2)
C8—S1—C11—C1035.41 (16)C1—C7—C8—S180.43 (18)
C8—S1—C11—C12−149.38 (18)C1—C7—C8—C9−154.32 (16)
C10—N1—C9—O2−177.54 (17)S1—C8—C9—O2−144.64 (15)
C10—N1—C9—C82.4 (3)S1—C8—C9—N135.38 (19)
C9—N1—C10—C11−20.1 (3)C7—C8—C9—O291.3 (2)
C9—N1—C10—C15161.39 (17)C7—C8—C9—N1−88.65 (19)
C6—C1—C2—C3−1.3 (3)N1—C10—C11—S1−5.5 (2)
C7—C1—C2—C3177.2 (2)N1—C10—C11—C12179.22 (19)
C2—C1—C6—C50.7 (3)C15—C10—C11—S1172.94 (14)
C7—C1—C6—C5−177.9 (2)C15—C10—C11—C12−2.3 (3)
C2—C1—C7—O1179.82 (18)N1—C10—C15—C14179.28 (19)
C2—C1—C7—C8−0.1 (3)C11—C10—C15—C140.8 (3)
C6—C1—C7—O1−1.7 (3)S1—C11—C12—C13−173.2 (2)
C6—C1—C7—C8178.41 (19)C10—C11—C12—C132.1 (3)
C1—C2—C3—C40.9 (4)C11—C12—C13—C14−0.4 (4)
C2—C3—C4—C50.1 (4)C12—C13—C14—C15−1.2 (4)
C3—C4—C5—C6−0.7 (4)C13—C14—C15—C101.0 (4)
C4—C5—C6—C10.3 (4)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x, −y, −z+1; (iv) x−1, y, z; (v) −x−1/2, y−1/2, −z+1/2; (vi) −x−1/2, y+1/2, −z+1/2; (vii) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2iii0.861.982.8383 (19)179
C2—H2···O1i0.932.553.453 (2)165
C8—H8···O1i0.982.363.170 (2)140

Symmetry codes: (iii) −x, −y, −z+1; (i) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2280).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Beryozkina, T. V., Kolos, N. N., Orlov, V. D., Zubatyuk, R. I. & Shishkin, O. V. (2004). Phosphorus Sulfur Silicon Relat. Elem.179, 2153–2162.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Güven, Ö. Ö., Erdoğan, T., Göeker, H. & Yildiz, S. (2007). Bioorg. Med. Chem. Lett.17, 2233–2236. [PubMed]
  • Kumaradhas, P. & Nirmala, K. A. (1997). Acta Cryst. C53, 313–315.
  • Nofal, Z. M., Fahmy, H. H. & Mohamed, H. S. (2002). Arch. Pharm. Res.25, 28–38. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhang, P., Du, N., Wang, L.-Z. & Li, Y. (2008). Acta Cryst. E64, o746. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography