PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1995.
Published online 2010 July 14. doi:  10.1107/S1600536810026814
PMCID: PMC3007412

(E)-1-(4-Bromo­phen­yl)-3-(2-meth­oxy­phen­yl)prop-2-en-1-one

Abstract

In the title compound, C16H13BrO2, the dihedral angle between the mean planes of the meth­oxy- and bromo-substituted benzene rings is 24.6 (1)°. The angles between the mean plane of the prop-2-en-1-one group and the 4-bromo­phenyl and 2-meth­oxy­phenyl ring planes are 18.8 (1) and 6.0 (1)°, respectively.

Related literature

For the use of chalcone compounds or chalcone-rich plant extracts as drugs or food preservatives, see: Dhar (1981 [triangle]). For the anti-inflammatory, anti­microbial, anti­fungal, anti­oxidant, cytotoxic, and anti­cancer activity of chalcones, see: Dimmock et al. (1999 [triangle]). For their high anti­malarial activity, see: Troeberg et al. (2000 [triangle]). For SHG conversion efficiencies, see: Sarojini et al. (2006 [triangle]). For related structures, see: Arai et al. (1994 [triangle]); Shettigar et al. (2006 [triangle]); Rosli et al. (2006 [triangle]); Ng et al. (2006 [triangle]); Harrison et al. (2006 [triangle]); Patil et al. (2007 [triangle]); Li et al. (1992 [triangle]); Loh et al. (2010 [triangle]). For standard bond lengths, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1995-scheme1.jpg

Experimental

Crystal data

  • C16H13BrO2
  • M r = 317.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1995-efi1.jpg
  • a = 17.729 (4) Å
  • b = 4.3505 (9) Å
  • c = 19.335 (4) Å
  • β = 116.93 (3)°
  • V = 1329.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.09 mm−1
  • T = 100 K
  • 0.55 × 0.50 × 0.35 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.674, T max = 0.746
  • 19884 measured reflections
  • 4121 independent reflections
  • 3635 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.070
  • S = 1.32
  • 4121 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026814/ci5129sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026814/ci5129Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JPJ thanks Dr Matthias Zeller and the Department of Chemistry, Youngstown State University (YSU), for their assistance with the data collection. The diffractometer was funded by NSF grant No. 0087210, by Ohio Board of Regents grant CAP-491, and by YSU. BN thanks UGC for a SAP chemical grant and KPK thanks the UGC for a teacher fellowship under the Faculty Improvement Programme. HSY thanks the UOM for sabbatical leave.

supplementary crystallographic information

Comment

Chalcones belong to the flavonoid family. Chemically they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon, α-unsaturated carbonyl system. A vast number of naturally occurring chalcones are polyhydroxylated in the aryl rings. The radical quenching properties of the phenolic groups present in many chalcones have raised interest in using the compounds or chalcone rich plant extracts as drugs or food preservatives (Dhar et al., 1981). Chalcones have been reported to possess many useful properties, including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, anticancer activities (Dimmock et al., 1999). Many chalcones have been described for their high antimalarial activity (Troeberg et al., 2000). Chalcones are finding applications as organic non-linear optical materials (NLO) due to their good SHG conversion efficiencies (Sarojini et al., 2006). The crystal structures of closely related chalcones, viz. 4-bromo-4'-methoxychalcone (Li et al., 1992), 4-bromo-4'-methoxychalcone (Arai et al., 1994), 1-(4-bromophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Shettigar et al., 2006), 1-(4-bromophenyl)-3-(2,5-dimethoxyphenyl) prop-2-en-1-one, (Rosli et al., 2006), 1-(4-bromophenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one (Ng et al., 2006), (2E)-3-(1,3-benzodioxol-5-yl)-1-(4-bromophenyl)prop-2-en-1-one (Harrison et al., 2006), and 1-(4-bromophenyl)-3-(3-methoxyphenyl)prop-2-en-1-one (Patil et al., 2007) and (E)-1-(6-chloro-2-methyl-4-phenyl-3-quinolyl)-3- (2-methoxyphenyl)prop-2-en-1-one (Loh et al., 2010) have been reported. Hence in continuation with the synthesis and crystal structure determination and also owing to the importance of chalcones, the title new bromo chalcone is synthesized and its crystal structure is reported.

The title compound is a chalcone derivative with 4-bromophenyl and 2-methoxy rings bonded at the opposite ends of a propenone group, the biologically active region (Fig 1). The dihedral angle between the mean planes of the bromo and methoxy substituted benzene rings is 24.6 (1)°. The methoxy (C16—O2—C15—C14 = -2.5 (2)°) substituted benzene ring is virtually planar to the prop-2-en-1-one group (dihedral angle = 6.0 (1)°), whereas the bromo substituted benzene ring attached to the prop-2-en-1-one is slightly twisted (O1—C7—C1—C2 = -16.7 (2)°). Bond distances and angles are in normal ranges (Allen et al., 1987).

Experimental

To a mixture of 4-bromoacetophenone (0.01 mol, 1.99 g) and 2-methoxybenzaldehyde (0.01 mol, 1.36 g) in 30 ml of ethanol, 7 ml of 30% KOH solution was added. The mixture was stirred for 6 h at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from a acetone-toluene(1:1 v/v) mixture by the slow evaporation method (m.p.329–331 K). Analytical data: found (calculated): C 60.48 (60.59%), H 4.27 (4.13%).

Refinement

H atoms were placed in their calculated positions and then refined using a riding model with C–H = 0.93–0.96 Å, and with Uiso(H) = 1.18–1.51Ueq(C).

Figures

Fig. 1.
Molecular structure of C16H13BrO2, showing the atom labeling scheme and 50% probability displacement ellipsoids.

Crystal data

C16H13BrO2F(000) = 640
Mr = 317.17Dx = 1.584 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 6810 reflections
a = 17.729 (4) Åθ = 2.4–31.2°
b = 4.3505 (9) ŵ = 3.09 mm1
c = 19.335 (4) ÅT = 100 K
β = 116.93 (3)°Block, yellow
V = 1329.6 (5) Å30.55 × 0.50 × 0.35 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer4121 independent reflections
Radiation source: fine-focus sealed tube3635 reflections with I > 2σ(I)
graphiteRint = 0.025
ω scansθmax = 31.3°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −25→25
Tmin = 0.674, Tmax = 0.746k = −6→6
19884 measured reflectionsl = −27→28

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.32w = 1/[σ2(Fo2) + (0.0363P)2] where P = (Fo2 + 2Fc2)/3
4121 reflections(Δ/σ)max = 0.002
173 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.945523 (8)−0.41655 (3)0.378517 (7)0.02597 (6)
O10.68442 (7)0.3686 (3)0.49024 (6)0.0336 (2)
O20.43404 (7)0.9395 (2)0.39362 (6)0.0264 (2)
C10.73529 (8)0.1076 (3)0.41311 (7)0.0189 (2)
C20.81716 (8)0.0874 (3)0.47366 (7)0.0220 (2)
H20.82980.18290.52070.026*
C30.88004 (8)−0.0719 (3)0.46513 (7)0.0231 (3)
H30.9346−0.08230.50560.028*
C40.85962 (8)−0.2161 (3)0.39466 (7)0.0205 (2)
C50.77855 (8)−0.2084 (3)0.33435 (7)0.0218 (2)
H50.7657−0.31080.28810.026*
C60.71655 (8)−0.0455 (3)0.34384 (7)0.0208 (2)
H60.6618−0.03830.30350.025*
C70.67125 (8)0.2954 (3)0.42458 (7)0.0217 (2)
C80.59523 (8)0.3990 (3)0.35504 (7)0.0220 (2)
H80.58690.33520.30620.026*
C90.53875 (9)0.5816 (3)0.36129 (7)0.0228 (2)
H90.54720.62430.41140.027*
C100.46472 (7)0.7234 (3)0.29846 (7)0.0200 (2)
C110.44482 (8)0.6850 (3)0.22024 (7)0.0236 (2)
H110.47920.56180.20700.028*
C120.37500 (9)0.8268 (3)0.16228 (7)0.0261 (3)
H120.36270.79900.11060.031*
C130.32339 (9)1.0104 (3)0.18148 (8)0.0264 (3)
H130.27641.10520.14240.032*
C140.34131 (8)1.0537 (3)0.25838 (8)0.0242 (3)
H140.30651.17750.27090.029*
C150.41145 (8)0.9114 (3)0.31666 (7)0.0204 (2)
C160.38472 (10)1.1365 (3)0.41671 (9)0.0305 (3)
H16A0.38831.34400.40160.046*
H16B0.40601.12690.47200.046*
H16C0.32681.07060.39200.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02597 (8)0.02800 (8)0.02547 (8)0.00666 (5)0.01300 (6)0.00312 (5)
O10.0330 (5)0.0476 (6)0.0203 (4)0.0095 (5)0.0120 (4)−0.0023 (4)
O20.0279 (5)0.0312 (5)0.0211 (4)0.0059 (4)0.0120 (4)−0.0031 (4)
C10.0210 (6)0.0194 (5)0.0173 (5)−0.0001 (4)0.0097 (4)0.0022 (4)
C20.0236 (6)0.0248 (6)0.0168 (5)−0.0009 (5)0.0086 (5)0.0000 (4)
C30.0215 (6)0.0266 (6)0.0189 (5)0.0007 (5)0.0071 (5)0.0027 (4)
C40.0236 (6)0.0185 (5)0.0217 (5)0.0022 (4)0.0122 (4)0.0037 (4)
C50.0262 (6)0.0204 (6)0.0187 (5)0.0006 (5)0.0101 (5)−0.0001 (4)
C60.0217 (6)0.0203 (6)0.0184 (5)−0.0017 (4)0.0074 (4)0.0001 (4)
C70.0226 (6)0.0233 (6)0.0203 (5)−0.0004 (5)0.0108 (4)0.0001 (4)
C80.0222 (6)0.0245 (6)0.0193 (5)−0.0009 (5)0.0092 (4)−0.0015 (4)
C90.0222 (6)0.0267 (6)0.0200 (5)−0.0026 (5)0.0100 (5)−0.0039 (4)
C100.0187 (5)0.0203 (5)0.0214 (5)−0.0033 (4)0.0094 (4)−0.0028 (4)
C110.0253 (6)0.0236 (6)0.0234 (6)−0.0033 (5)0.0124 (5)−0.0046 (5)
C120.0304 (7)0.0261 (6)0.0190 (5)−0.0047 (5)0.0089 (5)−0.0015 (5)
C130.0233 (6)0.0246 (6)0.0260 (6)−0.0021 (5)0.0064 (5)0.0015 (5)
C140.0217 (6)0.0222 (6)0.0284 (6)−0.0010 (5)0.0110 (5)−0.0013 (5)
C150.0203 (6)0.0197 (6)0.0217 (6)−0.0038 (4)0.0100 (5)−0.0031 (4)
C160.0345 (7)0.0325 (7)0.0310 (7)0.0052 (6)0.0206 (6)−0.0036 (5)

Geometric parameters (Å, °)

Br1—C41.8993 (13)C8—H80.93
O1—C71.2243 (16)C9—C101.4611 (18)
O2—C151.3600 (15)C9—H90.93
O2—C161.4325 (16)C10—C111.3987 (17)
C1—C61.3945 (17)C10—C151.4090 (17)
C1—C21.3950 (18)C11—C121.383 (2)
C1—C71.4946 (17)C11—H110.93
C2—C31.3846 (19)C12—C131.386 (2)
C2—H20.93C12—H120.93
C3—C41.3907 (17)C13—C141.3853 (19)
C3—H30.93C13—H130.93
C4—C51.3817 (18)C14—C151.3894 (18)
C5—C61.3882 (18)C14—H140.93
C5—H50.93C16—H16A0.96
C6—H60.93C16—H16B0.96
C7—C81.4787 (18)C16—H16C0.96
C8—C91.3259 (18)
C15—O2—C16118.42 (11)C8—C9—H9116.3
C6—C1—C2118.74 (12)C10—C9—H9116.3
C6—C1—C7122.47 (11)C11—C10—C15118.03 (11)
C2—C1—C7118.79 (11)C11—C10—C9122.71 (12)
C3—C2—C1121.29 (12)C15—C10—C9119.25 (11)
C3—C2—H2119.4C12—C11—C10121.20 (13)
C1—C2—H2119.4C12—C11—H11119.4
C2—C3—C4118.44 (12)C10—C11—H11119.4
C2—C3—H3120.8C11—C12—C13119.82 (12)
C4—C3—H3120.8C11—C12—H12120.1
C5—C4—C3121.71 (12)C13—C12—H12120.1
C5—C4—Br1118.52 (9)C12—C13—C14120.49 (13)
C3—C4—Br1119.72 (10)C12—C13—H13119.8
C4—C5—C6118.96 (11)C14—C13—H13119.8
C4—C5—H5120.5C13—C14—C15119.74 (13)
C6—C5—H5120.5C13—C14—H14120.1
C5—C6—C1120.82 (12)C15—C14—H14120.1
C5—C6—H6119.6O2—C15—C14124.01 (12)
C1—C6—H6119.6O2—C15—C10115.27 (11)
O1—C7—C8122.06 (12)C14—C15—C10120.73 (12)
O1—C7—C1119.67 (12)O2—C16—H16A109.5
C8—C7—C1118.20 (11)O2—C16—H16B109.5
C9—C8—C7120.98 (12)H16A—C16—H16B109.5
C9—C8—H8119.5O2—C16—H16C109.5
C7—C8—H8119.5H16A—C16—H16C109.5
C8—C9—C10127.46 (12)H16B—C16—H16C109.5
C6—C1—C2—C32.17 (18)C7—C8—C9—C10174.50 (12)
C7—C1—C2—C3−177.12 (11)C8—C9—C10—C11−1.3 (2)
C1—C2—C3—C4−0.75 (18)C8—C9—C10—C15179.82 (12)
C2—C3—C4—C5−1.24 (18)C15—C10—C11—C120.01 (19)
C2—C3—C4—Br1176.31 (9)C9—C10—C11—C12−178.89 (13)
C3—C4—C5—C61.73 (18)C10—C11—C12—C13−0.1 (2)
Br1—C4—C5—C6−175.85 (9)C11—C12—C13—C140.2 (2)
C4—C5—C6—C1−0.24 (18)C12—C13—C14—C15−0.2 (2)
C2—C1—C6—C5−1.67 (18)C16—O2—C15—C14−2.45 (19)
C7—C1—C6—C5177.60 (11)C16—O2—C15—C10177.64 (11)
C6—C1—C7—O1164.07 (13)C13—C14—C15—O2−179.85 (12)
C2—C1—C7—O1−16.66 (18)C13—C14—C15—C100.06 (19)
C6—C1—C7—C8−18.73 (18)C11—C10—C15—O2179.93 (11)
C2—C1—C7—C8160.54 (11)C9—C10—C15—O2−1.13 (17)
O1—C7—C8—C91.3 (2)C11—C10—C15—C140.01 (18)
C1—C7—C8—C9−175.87 (12)C9—C10—C15—C14178.95 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5129).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Arai, H., Higashigaki, Y., Goto, M. & Yano, S. (1994). Jpn J. Appl. Phys.33, 5755–5758.
  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA
  • Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.
  • Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem.6, 1125–1149. [PubMed]
  • Harrison, W. T. A., Bindya, S., Yathirajan, H. S., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o5293–o5295.
  • Li, Z.-D., Huang, L.-R., Su, G.-B. & Wang, H.-J. (1992). Jiegou Huaxue, 11, 1–4.
  • Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o353–o354. [PMC free article] [PubMed]
  • Ng, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1570–o1572.
  • Patil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.
  • Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A., Dharmaprakash, S. M. & Karthikeyan, M. S. (2006). Acta Cryst. E62, o1460–o1462.
  • Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shettigar, V., Rosli, M. M., Fun, H.-K., Razak, I. A., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4128–o4129.
  • Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med.6, 660–669. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography