PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2119.
Published online 2010 July 24. doi:  10.1107/S1600536810028904
PMCID: PMC3007411

5,8-Dibromo-14,17-difluoro-2,11-dithia­[3.3]paracyclo­phane

Abstract

The title compound, C16H12Br2F2S2 [systematic name: 12,15-dibromo-52,55-difluoro-2,7-dithia-1,5(1,4)-dibenzenaocta­phane], has two approximately parallel benzene rings with a dihedral angle of 1.53 (15)° between them and with a centroid–centroid distance of 3.3066 (18) Å. In the crystal structure, mol­ecules are stacked along the a axis through an inter­molecular π–π inter­action with a centroid–centroid distance of 3.7803 (18) Å. Mol­ecules are also connected by a C—H(...)S inter­action, forming a chain along the b axis.

Related literature

For the preparation of the title compound, see: Wang et al. (2006 [triangle]); Xu et al. (2008 [triangle]). For potential applications of intra­molecular π–π inter­actions in organic reactions, see: Korenaga et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2119-scheme1.jpg

Experimental

Crystal data

  • C16H12Br2F2S2
  • M r = 466.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2119-efi1.jpg
  • a = 6.9744 (5) Å
  • b = 9.6798 (7) Å
  • c = 12.9376 (9) Å
  • α = 72.301 (1)°
  • β = 75.764 (1)°
  • γ = 76.535 (1)°
  • V = 794.63 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 5.38 mm−1
  • T = 298 K
  • 0.16 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.480, T max = 0.616
  • 4952 measured reflections
  • 2920 independent reflections
  • 2493 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.096
  • S = 1.02
  • 2920 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.85 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810028904/is2571sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028904/is2571Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University. The authors thank Mr Dongdong Dai for synthesizing the title compound, Mr Ziyong Li for solving and refining the structure, and Mr Xianggao Meng for helping with the data collection.

supplementary crystallographic information

Comment

The aromatic-aromatic π–π interaction is an important phenomena in organic reactions (Korenaga et al., 2007). The structural and electronic properties of these derivatives result from the characteristic interactions between the two π-electron systems. Substituents in the benzene rings can significantly effect the π–π interaction. In the compound [3,3]paracyclophane, we explored the intramolecular π–π interaction between the two benzene rings. In the crystal structure, intermolecular π–π and non-classical hydrogen bonding interactions link the molecule, in which they seem to be effective in the stabilization of the structure.

Experimental

The title compound was prepared according to the method reported previously (Wang et al., 2006; Xu et al., 2008). A solution with equimolar amounts of (2,5-difluoro-1,4-phenylene)dimethanethiol and 1,4-dibromo-2,5-bis(bromomethyl)benzene in degassed THF (500 ml) was added dropwised under N2 over 12 h to a refluxing solution of potassium carbonate (5equiv) in EtOH (1.2L). After an additional 2 h at the reflux temperature 363 K, the mixture was cooled and the solvent were removed. The resulting residue was treated with CH2Cl2 (300 ml) and water (300 ml). The organic phase was separated, the aqueous extracted with CH2Cl2 three times. The combined organic layers was dried over Na2SO4, Then solvent was removed, and the resulting solid was chromatographed on silica gel using CH2Cl2/petroleum ether (1:1, v/v) as eluent. The product was further purified by recrystallization from toluene.

Refinement

All H atoms were initially located in a difference map, and then were constrained to an idealized geometry (C—H = 0.93 or 0.97 Å). The isotropic displacement parameters were set to Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.

Crystal data

C16H12Br2F2S2Z = 2
Mr = 466.20F(000) = 456
Triclinic, P1Dx = 1.948 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9744 (5) ÅCell parameters from 2764 reflections
b = 9.6798 (7) Åθ = 2.4–28.2°
c = 12.9376 (9) ŵ = 5.38 mm1
α = 72.301 (1)°T = 298 K
β = 75.764 (1)°Block, colorless
γ = 76.535 (1)°0.16 × 0.12 × 0.10 mm
V = 794.63 (10) Å3

Data collection

Bruker SMART APEX diffractometer2920 independent reflections
Radiation source: fine-focus sealed tube2493 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scansθmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.480, Tmax = 0.616k = −11→11
4952 measured reflectionsl = −13→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0636P)2] where P = (Fo2 + 2Fc2)/3
2920 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = −0.85 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.27806 (5)0.76264 (4)0.51530 (3)0.04905 (14)
Br20.44765 (5)0.76124 (4)−0.00392 (3)0.04945 (14)
C10.4459 (4)0.6243 (3)0.2275 (3)0.0328 (6)
C20.3888 (4)0.7531 (3)0.1493 (2)0.0337 (6)
C30.2827 (4)0.8783 (3)0.1795 (3)0.0340 (6)
H30.24320.96140.12520.041*
C40.2339 (4)0.8832 (3)0.2883 (3)0.0336 (6)
C50.3120 (4)0.7600 (3)0.3655 (2)0.0330 (6)
C60.4130 (4)0.6327 (3)0.3353 (3)0.0356 (6)
H60.45970.55130.38870.043*
C70.5314 (4)0.4785 (3)0.2002 (3)0.0395 (7)
H7A0.65090.43460.23190.047*
H7B0.57090.49560.12060.047*
C80.1518 (5)0.4395 (3)0.1753 (3)0.0472 (8)
H8A0.21000.47170.09760.057*
H8B0.07000.36720.18290.057*
C90.0172 (4)0.5697 (3)0.2108 (3)0.0365 (7)
C10−0.0598 (4)0.6907 (3)0.1333 (3)0.0387 (7)
C11−0.1606 (4)0.8195 (3)0.1582 (3)0.0424 (7)
H11−0.20730.89840.10300.051*
C12−0.1935 (4)0.8330 (3)0.2650 (3)0.0384 (7)
C13−0.1325 (4)0.7082 (3)0.3432 (3)0.0381 (7)
C14−0.0278 (4)0.5803 (3)0.3187 (3)0.0379 (7)
H140.01340.50030.37480.045*
C15−0.2780 (4)0.9789 (3)0.2925 (3)0.0480 (8)
H15A−0.31910.96150.37210.058*
H15B−0.39651.02380.26010.058*
C160.0952 (4)1.0135 (3)0.3234 (3)0.0425 (7)
H16A0.17591.08490.31920.051*
H16B0.03190.98010.40010.051*
F1−0.0293 (3)0.6816 (2)0.02783 (17)0.0624 (5)
F2−0.1649 (3)0.7156 (2)0.45008 (16)0.0599 (5)
S10.35458 (12)0.34989 (8)0.25145 (7)0.0429 (2)
S2−0.10017 (11)1.10582 (8)0.24325 (7)0.0417 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0641 (2)0.0407 (2)0.0429 (2)0.00474 (15)−0.01841 (16)−0.01540 (16)
Br20.0578 (2)0.0461 (2)0.0390 (2)−0.00154 (16)−0.00537 (15)−0.01191 (16)
C10.0266 (12)0.0259 (14)0.0458 (17)−0.0033 (11)−0.0048 (12)−0.0118 (13)
C20.0292 (13)0.0319 (15)0.0397 (16)−0.0034 (11)−0.0065 (12)−0.0103 (13)
C30.0315 (13)0.0252 (14)0.0429 (17)−0.0033 (11)−0.0101 (12)−0.0042 (12)
C40.0325 (14)0.0243 (14)0.0469 (18)−0.0043 (11)−0.0095 (12)−0.0126 (13)
C50.0317 (13)0.0273 (14)0.0414 (16)−0.0029 (11)−0.0097 (12)−0.0102 (12)
C60.0328 (14)0.0272 (14)0.0446 (17)−0.0003 (11)−0.0121 (13)−0.0057 (13)
C70.0400 (15)0.0286 (15)0.0489 (19)0.0008 (12)−0.0068 (13)−0.0150 (14)
C80.0494 (17)0.0327 (16)0.068 (2)−0.0054 (13)−0.0184 (16)−0.0204 (16)
C90.0301 (13)0.0265 (14)0.0548 (19)−0.0065 (11)−0.0095 (13)−0.0109 (14)
C100.0397 (15)0.0361 (16)0.0444 (17)−0.0093 (12)−0.0147 (13)−0.0088 (14)
C110.0395 (15)0.0320 (16)0.054 (2)−0.0047 (12)−0.0178 (14)−0.0022 (14)
C120.0303 (14)0.0279 (15)0.056 (2)−0.0035 (11)−0.0084 (13)−0.0111 (14)
C130.0315 (14)0.0377 (17)0.0425 (18)−0.0071 (12)−0.0019 (12)−0.0098 (14)
C140.0368 (14)0.0278 (14)0.0455 (18)−0.0053 (11)−0.0101 (13)−0.0027 (13)
C150.0383 (15)0.0348 (17)0.066 (2)0.0012 (13)−0.0058 (15)−0.0156 (16)
C160.0467 (16)0.0278 (15)0.057 (2)0.0058 (13)−0.0182 (15)−0.0190 (14)
F10.0784 (13)0.0609 (13)0.0542 (13)−0.0022 (10)−0.0265 (11)−0.0201 (10)
F20.0644 (12)0.0585 (12)0.0459 (12)0.0036 (10)−0.0028 (9)−0.0146 (10)
S10.0498 (4)0.0213 (4)0.0546 (5)−0.0002 (3)−0.0115 (4)−0.0086 (3)
S20.0464 (4)0.0214 (4)0.0543 (5)0.0031 (3)−0.0157 (4)−0.0075 (3)

Geometric parameters (Å, °)

Br1—C51.901 (3)C8—H8B0.9700
Br2—C21.904 (3)C9—C141.384 (4)
C1—C61.381 (4)C9—C101.388 (4)
C1—C21.391 (4)C10—F11.355 (4)
C1—C71.510 (4)C10—C111.370 (4)
C2—C31.377 (4)C11—C121.386 (4)
C3—C41.377 (4)C11—H110.9300
C3—H30.9300C12—C131.376 (4)
C4—C51.399 (4)C12—C151.511 (4)
C4—C161.516 (4)C13—F21.367 (3)
C5—C61.386 (4)C13—C141.367 (4)
C6—H60.9300C14—H140.9300
C7—S11.823 (3)C15—S21.817 (3)
C7—H7A0.9700C15—H15A0.9700
C7—H7B0.9700C15—H15B0.9700
C8—C91.507 (4)C16—S21.815 (3)
C8—S11.822 (3)C16—H16A0.9700
C8—H8A0.9700C16—H16B0.9700
C6—C1—C2116.9 (3)C14—C9—C8123.2 (3)
C6—C1—C7119.9 (3)C10—C9—C8120.3 (3)
C2—C1—C7123.1 (3)F1—C10—C11118.9 (3)
C3—C2—C1121.6 (3)F1—C10—C9118.2 (3)
C3—C2—Br2117.3 (2)C11—C10—C9122.9 (3)
C1—C2—Br2121.1 (2)C10—C11—C12120.4 (3)
C4—C3—C2121.5 (3)C10—C11—H11119.8
C4—C3—H3119.3C12—C11—H11119.8
C2—C3—H3119.3C13—C12—C11116.2 (3)
C3—C4—C5117.0 (3)C13—C12—C15121.9 (3)
C3—C4—C16121.5 (3)C11—C12—C15121.8 (3)
C5—C4—C16121.5 (3)F2—C13—C14118.0 (3)
C6—C5—C4121.0 (3)F2—C13—C12118.2 (3)
C6—C5—Br1118.4 (2)C14—C13—C12123.6 (3)
C4—C5—Br1120.6 (2)C13—C14—C9120.2 (3)
C1—C6—C5121.3 (3)C13—C14—H14119.9
C1—C6—H6119.3C9—C14—H14119.9
C5—C6—H6119.3C12—C15—S2113.1 (2)
C1—C7—S1112.95 (19)C12—C15—H15A109.0
C1—C7—H7A109.0S2—C15—H15A109.0
S1—C7—H7A109.0C12—C15—H15B109.0
C1—C7—H7B109.0S2—C15—H15B109.0
S1—C7—H7B109.0H15A—C15—H15B107.8
H7A—C7—H7B107.8C4—C16—S2115.7 (2)
C9—C8—S1115.3 (2)C4—C16—H16A108.4
C9—C8—H8A108.4S2—C16—H16A108.4
S1—C8—H8A108.4C4—C16—H16B108.4
C9—C8—H8B108.4S2—C16—H16B108.4
S1—C8—H8B108.4H16A—C16—H16B107.4
H8A—C8—H8B107.5C8—S1—C7103.73 (14)
C14—C9—C10116.3 (3)C16—S2—C15102.73 (15)
C6—C1—C2—C3−7.7 (4)C14—C9—C10—C115.4 (4)
C7—C1—C2—C3169.6 (2)C8—C9—C10—C11−171.2 (3)
C6—C1—C2—Br2174.25 (19)F1—C10—C11—C12−179.6 (3)
C7—C1—C2—Br2−8.5 (4)C9—C10—C11—C12−1.2 (4)
C1—C2—C3—C42.1 (4)C10—C11—C12—C13−4.5 (4)
Br2—C2—C3—C4−179.7 (2)C10—C11—C12—C15171.4 (3)
C2—C3—C4—C55.5 (4)C11—C12—C13—F2−178.9 (3)
C2—C3—C4—C16−172.1 (2)C15—C12—C13—F25.2 (4)
C3—C4—C5—C6−7.6 (4)C11—C12—C13—C146.2 (4)
C16—C4—C5—C6170.1 (2)C15—C12—C13—C14−169.7 (3)
C3—C4—C5—Br1173.4 (2)F2—C13—C14—C9−177.0 (3)
C16—C4—C5—Br1−9.0 (4)C12—C13—C14—C9−2.1 (4)
C2—C1—C6—C55.5 (4)C10—C9—C14—C13−3.7 (4)
C7—C1—C6—C5−171.8 (2)C8—C9—C14—C13172.7 (3)
C4—C5—C6—C12.1 (4)C13—C12—C15—S2103.6 (3)
Br1—C5—C6—C1−178.9 (2)C11—C12—C15—S2−72.1 (3)
C6—C1—C7—S170.6 (3)C3—C4—C16—S232.3 (4)
C2—C1—C7—S1−106.6 (3)C5—C4—C16—S2−145.2 (2)
S1—C8—C9—C14−32.7 (4)C9—C8—S1—C7−73.4 (3)
S1—C8—C9—C10143.6 (2)C1—C7—S1—C864.0 (3)
C14—C9—C10—F1−176.2 (2)C4—C16—S2—C1575.0 (3)
C8—C9—C10—F17.2 (4)C12—C15—S2—C16−64.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8B···S2i0.972.863.801 (3)165

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2571).

References

  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Korenaga, T., Kadonawaki, K. & Sakai, T. (2007). J. Fluorine Chem.128, 557–561.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, W., Xu, J., Zhang, X. & Lai, Y.-H. (2006). Macromolecules, 39, 7277–7285.
  • Xu, J.-W., Wang, W.-L., Lin, T.-T., Sun, Z. & Lai, Y.-H. (2008). Supramol. Chem.20, 723–730.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography